हिंदी

D Y D X = 2 X Y , Y ( 0 ) = 1 - Mathematics

Advertisements
Advertisements

प्रश्न

\[\frac{dy}{dx} = 2xy, y\left( 0 \right) = 1\]

उत्तर

\[ \frac{dy}{dx} = 2xy, y\left( 0 \right) = 1\]
\[ \Rightarrow \frac{1}{y}dy = 2x dx\]
Integrating both sides, we get 
\[\int\frac{1}{y}dy = \int2x dx\]
\[\log \left| y \right| = x^2 + C . . . . . (1)\]
\[\text{We know that at }x = 0, y = 1 . \]
Substituting the values of x and y in (1), we get
\[0 = 0 + C\]
\[ \Rightarrow C = 0\]
Substituting the value of C in (1), we get 
\[\log \left| y \right| = x^2 \]
\[ \Rightarrow y = e^{x^2} \]
\[\text{ Hence, }y = e^{x^2}\text{ is the required solution }. \]

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 22: Differential Equations - Exercise 22.07 [पृष्ठ ५६]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 22 Differential Equations
Exercise 22.07 | Q 45.5 | पृष्ठ ५६

वीडियो ट्यूटोरियलVIEW ALL [2]

संबंधित प्रश्न

Prove that:

`int_0^(2a)f(x)dx = int_0^af(x)dx + int_0^af(2a - x)dx`


\[\frac{d^3 x}{d t^3} + \frac{d^2 x}{d t^2} + \left( \frac{dx}{dt} \right)^2 = e^t\]

\[\sqrt{1 + \left( \frac{dy}{dx} \right)^2} = \left( c\frac{d^2 y}{d x^2} \right)^{1/3}\]

\[x + \left( \frac{dy}{dx} \right) = \sqrt{1 + \left( \frac{dy}{dx} \right)^2}\]

Verify that y2 = 4ax is a solution of the differential equation y = x \[\frac{dy}{dx} + a\frac{dx}{dy}\]


Verify that \[y = ce^{tan^{- 1}} x\]  is a solution of the differential equation \[\left( 1 + x^2 \right)\frac{d^2 y}{d x^2} + \left( 2x - 1 \right)\frac{dy}{dx} = 0\]


Differential equation \[x\frac{dy}{dx} = 1, y\left( 1 \right) = 0\]

Function y = log x


Differential equation \[\frac{d^2 y}{d x^2} + y = 0, y \left( 0 \right) = 1, y' \left( 0 \right) = 1\] Function y = sin x + cos x


\[x\left( x^2 - 1 \right)\frac{dy}{dx} = 1, y\left( 2 \right) = 0\]

\[\frac{dy}{dx} = \frac{1 + y^2}{y^3}\]

\[\frac{dy}{dx} = \frac{x e^x \log x + e^x}{x \cos y}\]

(1 − x2) dy + xy dx = xy2 dx


tan y dx + sec2 y tan x dy = 0


(y2 + 1) dx − (x2 + 1) dy = 0


Solve the following differential equation:
\[\left( 1 + y^2 \right) \tan^{- 1} xdx + 2y\left( 1 + x^2 \right)dy = 0\]


\[\frac{dr}{dt} = - rt, r\left( 0 \right) = r_0\]

Solve the following initial value problem:-

\[\frac{dy}{dx} + y \tan x = 2x + x^2 \tan x, y\left( 0 \right) = 1\]


The slope of the tangent at a point P (x, y) on a curve is \[\frac{- x}{y}\]. If the curve passes through the point (3, −4), find the equation of the curve.


Find the curve for which the intercept cut-off by a tangent on x-axis is equal to four times the ordinate of the point of contact.

 

The normal to a given curve at each point (x, y) on the curve passes through the point (3, 0). If the curve contains the point (3, 4), find its equation.


Find the equation of the curve passing through the point (0, 1) if the slope of the tangent to the curve at each of its point is equal to the sum of the abscissa and the product of the abscissa and the ordinate of the point.


The slope of a curve at each of its points is equal to the square of the abscissa of the point. Find the particular curve through the point (−1, 1).


Write the differential equation obtained by eliminating the arbitrary constant C in the equation x2 − y2 = C2.


Find the solution of the differential equation
\[x\sqrt{1 + y^2}dx + y\sqrt{1 + x^2}dy = 0\]


Which of the following transformations reduce the differential equation \[\frac{dz}{dx} + \frac{z}{x}\log z = \frac{z}{x^2} \left( \log z \right)^2\] into the form \[\frac{du}{dx} + P\left( x \right) u = Q\left( x \right)\]


The differential equation
\[\frac{dy}{dx} + Py = Q y^n , n > 2\] can be reduced to linear form by substituting


The integrating factor of the differential equation \[x\frac{dy}{dx} - y = 2 x^2\]


The integrating factor of the differential equation \[\left( 1 - y^2 \right)\frac{dx}{dy} + yx = ay\left( - 1 < y < 1 \right)\] is ______.


Form the differential equation representing the family of parabolas having vertex at origin and axis along positive direction of x-axis.


Solve the following differential equation.

(x2 − y2 ) dx + 2xy dy = 0


Solve the following differential equation.

`dy/dx + y = e ^-x`


Solve the following differential equation.

`(x + a) dy/dx = – y + a`


 `dy/dx = log x`


y dx – x dy + log x dx = 0


Select and write the correct alternative from the given option for the question

The differential equation of y = Ae5x + Be–5x is


For the differential equation, find the particular solution (x – y2x) dx – (y + x2y) dy = 0 when x = 2, y = 0


Solve the following differential equation `("d"y)/("d"x)` = x2y + y


Given that `"dy"/"dx"` = yex and x = 0, y = e. Find the value of y when x = 1.


The differential equation of all non horizontal lines in a plane is `("d"^2x)/("d"y^2)` = 0


There are n students in a school. If r % among the students are 12 years or younger, which of the following expressions represents the number of students who are older than 12?


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×