Advertisements
Advertisements
प्रश्न
The slope of a curve at each of its points is equal to the square of the abscissa of the point. Find the particular curve through the point (−1, 1).
उत्तर
According to the question,
\[\frac{dy}{dx} = x^2\]
\[\Rightarrow dy = x^2 dx\]
Integrating both sides with respect to x, we get
\[\int dy = \int x^2 dx\]
\[ \Rightarrow y = \frac{x^3}{3} + C\]
\[\text{ Since the curve passes through }\left( - 1, 1 \right), \text{ it satisfies the above equation .} \]
\[ \therefore 1 = \frac{- 1}{3} + C\]
\[ \Rightarrow C = 1 + \frac{1}{3}\]
\[ \Rightarrow C = \frac{4}{3}\]
Putting the value of C, we get
\[y = \frac{x^3}{3} + \frac{4}{3}\]
\[ \Rightarrow 3y = x^3 + 4\]
APPEARS IN
संबंधित प्रश्न
Show that y = ax3 + bx2 + c is a solution of the differential equation \[\frac{d^3 y}{d x^3} = 6a\].
Verify that \[y = ce^{tan^{- 1}} x\] is a solution of the differential equation \[\left( 1 + x^2 \right)\frac{d^2 y}{d x^2} + \left( 2x - 1 \right)\frac{dy}{dx} = 0\]
Differential equation \[\frac{d^2 y}{d x^2} + y = 0, y \left( 0 \right) = 1, y' \left( 0 \right) = 1\] Function y = sin x + cos x
xy dy = (y − 1) (x + 1) dx
(y + xy) dx + (x − xy2) dy = 0
Solve the following differential equation:
\[y\left( 1 - x^2 \right)\frac{dy}{dx} = x\left( 1 + y^2 \right)\]
If y(x) is a solution of the different equation \[\left( \frac{2 + \sin x}{1 + y} \right)\frac{dy}{dx} = - \cos x\] and y(0) = 1, then find the value of y(π/2).
If the marginal cost of manufacturing a certain item is given by C' (x) = \[\frac{dC}{dx}\] = 2 + 0.15 x. Find the total cost function C (x), given that C (0) = 100.
Show that the equation of the curve whose slope at any point is equal to y + 2x and which passes through the origin is y + 2 (x + 1) = 2e2x.
Find the equation of the curve which passes through the point (3, −4) and has the slope \[\frac{2y}{x}\] at any point (x, y) on it.
The rate of increase of bacteria in a culture is proportional to the number of bacteria present and it is found that the number doubles in 6 hours. Prove that the bacteria becomes 8 times at the end of 18 hours.
Write the differential equation obtained eliminating the arbitrary constant C in the equation xy = C2.
The solution of the differential equation y1 y3 = y22 is
What is integrating factor of \[\frac{dy}{dx}\] + y sec x = tan x?
Integrating factor of the differential equation cos \[x\frac{dy}{dx} + y \sin x = 1\], is
If xmyn = (x + y)m+n, prove that \[\frac{dy}{dx} = \frac{y}{x} .\]
Show that y = ae2x + be−x is a solution of the differential equation \[\frac{d^2 y}{d x^2} - \frac{dy}{dx} - 2y = 0\]
Find the particular solution of the differential equation `"dy"/"dx" = "xy"/("x"^2+"y"^2),`given that y = 1 when x = 0
Form the differential equation from the relation x2 + 4y2 = 4b2
Solve the following differential equation.
`y^3 - dy/dx = x dy/dx`
For the following differential equation find the particular solution.
`(x + 1) dy/dx − 1 = 2e^(−y)`,
when y = 0, x = 1
Solve the following differential equation.
`xy dy/dx = x^2 + 2y^2`
The differential equation of `y = k_1e^x+ k_2 e^-x` is ______.
The solution of `dy/dx + x^2/y^2 = 0` is ______
Select and write the correct alternative from the given option for the question
The differential equation of y = Ae5x + Be–5x is
Solve the differential equation sec2y tan x dy + sec2x tan y dx = 0
Solve the differential equation (x2 – yx2)dy + (y2 + xy2)dx = 0
Verify y = `a + b/x` is solution of `x(d^2y)/(dx^2) + 2 (dy)/(dx)` = 0
y = `a + b/x`
`(dy)/(dx) = square`
`(d^2y)/(dx^2) = square`
Consider `x(d^2y)/(dx^2) + 2(dy)/(dx)`
= `x square + 2 square`
= `square`
Hence y = `a + b/x` is solution of `square`
Solve the following differential equation
sec2 x tan y dx + sec2 y tan x dy = 0
Solution: sec2 x tan y dx + sec2 y tan x dy = 0
∴ `(sec^2x)/tanx "d"x + square` = 0
Integrating, we get
`square + int (sec^2y)/tany "d"y` = log c
Each of these integral is of the type
`int ("f'"(x))/("f"(x)) "d"x` = log |f(x)| + log c
∴ the general solution is
`square + log |tan y|` = log c
∴ log |tan x . tan y| = log c
`square`
This is the general solution.
Solve `x^2 "dy"/"dx" - xy = 1 + cos(y/x)`, x ≠ 0 and x = 1, y = `pi/2`
If `y = log_2 log_2(x)` then `(dy)/(dx)` =
The value of `dy/dx` if y = |x – 1| + |x – 4| at x = 3 is ______.