हिंदी

If xmyn = (x + y)m+n, prove that dydx=yx. - Mathematics

Advertisements
Advertisements

प्रश्न

If xmyn = (x + y)m+n, prove that \[\frac{dy}{dx} = \frac{y}{x} .\]

योग

उत्तर

Given: xmyn = (x + y)m+n

​Taking log on both the sides, we get

\[\log\left( x^m y^n \right) = \log \left( x + y \right)^{m + n} \]

\[ \Rightarrow \log\left( x^m \right) + \log\left( y^n \right) = \left( m + n \right) \log\left( x + y \right)\]

\[ \Rightarrow m\log x + n\log y = \left( m + n \right) \log\left( x + y \right)\]

Differentiating w.r.t. x, we get

\[\frac{m}{x} + \frac{n}{y}\frac{dy}{dx} = \frac{m + n}{x + y}\left( 1 + \frac{dy}{dx} \right)\]

\[ \Rightarrow \frac{m}{x} - \frac{\left( m + n \right)}{x + y} = \left( \frac{m + n}{x + y} - \frac{n}{y} \right)\frac{dy}{dx}\]

\[ \Rightarrow \left( \frac{my + ny - nx - ny}{y\left( x + y \right)} \right)\frac{dy}{dx} = \frac{mx + my - mx - nx}{x\left( x + y \right)}\]

\[ \Rightarrow \frac{dy}{dx}\left( \frac{my - nx}{y} \right) = \left( \frac{my - nx}{x} \right)\]

\[ \therefore \frac{dy}{dx} = \frac{y}{x}\]

Hence proved.

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
2013-2014 (March) Foreign Set 1

वीडियो ट्यूटोरियलVIEW ALL [2]

संबंधित प्रश्न

Solve the equation for x: `sin^(-1)  5/x + sin^(-1)  12/x = pi/2, x != 0`


\[x + \left( \frac{dy}{dx} \right) = \sqrt{1 + \left( \frac{dy}{dx} \right)^2}\]

Show that y = AeBx is a solution of the differential equation

\[\frac{d^2 y}{d x^2} = \frac{1}{y} \left( \frac{dy}{dx} \right)^2\]

Verify that y2 = 4ax is a solution of the differential equation y = x \[\frac{dy}{dx} + a\frac{dx}{dy}\]


Verify that y = log \[\left( x + \sqrt{x^2 + a^2} \right)^2\]  satisfies the differential equation \[\left( a^2 + x^2 \right)\frac{d^2 y}{d x^2} + x\frac{dy}{dx} = 0\]


For the following differential equation verify that the accompanying function is a solution:

Differential equation Function
\[x\frac{dy}{dx} = y\]
y = ax

\[\frac{dy}{dx} = \frac{1 - \cos x}{1 + \cos x}\]

\[\frac{1}{x}\frac{dy}{dx} = \tan^{- 1} x, x \neq 0\]

\[\frac{dy}{dx} = x \log x\]

\[\frac{dy}{dx} = x e^x - \frac{5}{2} + \cos^2 x\]

\[\left( x - 1 \right)\frac{dy}{dx} = 2 x^3 y\]

xy (y + 1) dy = (x2 + 1) dx


\[y\sqrt{1 + x^2} + x\sqrt{1 + y^2}\frac{dy}{dx} = 0\]

\[\cos x \cos y\frac{dy}{dx} = - \sin x \sin y\]

Solve the following differential equation:
\[\left( 1 + y^2 \right) \tan^{- 1} xdx + 2y\left( 1 + x^2 \right)dy = 0\]


\[2x\frac{dy}{dx} = 5y, y\left( 1 \right) = 1\]

\[xy\frac{dy}{dx} = \left( x + 2 \right)\left( y + 2 \right), y\left( 1 \right) = - 1\]

If y(x) is a solution of the different equation \[\left( \frac{2 + \sin x}{1 + y} \right)\frac{dy}{dx} = - \cos x\] and y(0) = 1, then find the value of y(π/2).


\[\cos^2 \left( x - 2y \right) = 1 - 2\frac{dy}{dx}\]

Find the equation of the curve passing through the point \[\left( 1, \frac{\pi}{4} \right)\]  and tangent at any point of which makes an angle tan−1  \[\left( \frac{y}{x} - \cos^2 \frac{y}{x} \right)\] with x-axis.


A curve is such that the length of the perpendicular from the origin on the tangent at any point P of the curve is equal to the abscissa of P. Prove that the differential equation of the curve is \[y^2 - 2xy\frac{dy}{dx} - x^2 = 0\], and hence find the curve.


Find the solution of the differential equation
\[x\sqrt{1 + y^2}dx + y\sqrt{1 + x^2}dy = 0\]


The differential equation obtained on eliminating A and B from y = A cos ωt + B sin ωt, is


In the following example, verify that the given function is a solution of the corresponding differential equation.

Solution D.E.
y = xn `x^2(d^2y)/dx^2 - n xx (xdy)/dx + ny =0`

Find the differential equation whose general solution is

x3 + y3 = 35ax.


Form the differential equation from the relation x2 + 4y2 = 4b2


Solve the following differential equation.

`y^3 - dy/dx = x dy/dx`


The solution of `dy/dx + x^2/y^2 = 0` is ______


Solve the differential equation

`y (dy)/(dx) + x` = 0


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×