हिंदी

The Differential Equation Obtained on Eliminating a and B from Y = a Cos ωT + B Sin ωT, is - Mathematics

Advertisements
Advertisements

प्रश्न

The differential equation obtained on eliminating A and B from y = A cos ωt + B sin ωt, is

विकल्प

  • y" + y' = 0

  • y" − ω2 y = 0

  • y" = −ω2 y

  • y" + y = 0

MCQ

उत्तर

y" = −ω2 y

 

We have,
y = A cos ωt + B sin ωt                                  .....(1)
Differentiating both sides of (1) with respect to x, we get
\[\frac{dy}{dt} = - A\omega \sin \omega t + B \omega \cos \omega t\]                              .....(2)
Differentiating both sides of (2) again with respect to x, we get

\[\frac{d^2 y}{d t^2} = - A \omega^2 \cos \omega t - B \omega^2 \sin \omega t\]

\[ \Rightarrow \frac{d^2 y}{d t^2} = - \omega^2 \left( A \cos \omega t + B \sin \omega t \right)\]

\[ \Rightarrow \frac{d^2 y}{d t^2} = - \omega^2 y ..........\left[ \text{Using }\left( 1 \right) \right]\]

\[ \therefore y'' = - \omega^2 y\]

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 22: Differential Equations - MCQ [पृष्ठ १४०]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 22 Differential Equations
MCQ | Q 7 | पृष्ठ १४०

वीडियो ट्यूटोरियलVIEW ALL [2]

संबंधित प्रश्न

\[\frac{d^3 x}{d t^3} + \frac{d^2 x}{d t^2} + \left( \frac{dx}{dt} \right)^2 = e^t\]

\[\frac{d^2 y}{d x^2} + \left( \frac{dy}{dx} \right)^2 + xy = 0\]

Show that y = AeBx is a solution of the differential equation

\[\frac{d^2 y}{d x^2} = \frac{1}{y} \left( \frac{dy}{dx} \right)^2\]

Verify that y = cx + 2c2 is a solution of the differential equation 

\[2 \left( \frac{dy}{dx} \right)^2 + x\frac{dy}{dx} - y = 0\].

Verify that y = − x − 1 is a solution of the differential equation (y − x) dy − (y2 − x2) dx = 0.


\[\left( x^3 + x^2 + x + 1 \right)\frac{dy}{dx} = 2 x^2 + x\]

\[\sqrt{1 + x^2 + y^2 + x^2 y^2} + xy\frac{dy}{dx} = 0\]

(y + xy) dx + (x − xy2) dy = 0


\[\frac{dy}{dx} = 1 - x + y - xy\]

\[\left( x - 1 \right)\frac{dy}{dx} = 2 x^3 y\]

Solve the following differential equation: 
(xy2 + 2x) dx + (x2 y + 2y) dy = 0


Solve the following differential equation:
\[\text{ cosec }x \log y \frac{dy}{dx} + x^2 y^2 = 0\]


Solve the following differential equation:
\[xy\frac{dy}{dx} = 1 + x + y + xy\]

 


Solve the following differential equation:
\[\left( 1 + y^2 \right) \tan^{- 1} xdx + 2y\left( 1 + x^2 \right)dy = 0\]


\[\frac{dy}{dx} = y \tan 2x, y\left( 0 \right) = 2\] 

\[\frac{dy}{dx} = 2 e^{2x} y^2 , y\left( 0 \right) = - 1\]

\[\cos y\frac{dy}{dx} = e^x , y\left( 0 \right) = \frac{\pi}{2}\]

\[\frac{dy}{dx} = 1 + x + y^2 + x y^2\] when y = 0, x = 0

Solve the differential equation \[\left( 1 + x^2 \right)\frac{dy}{dx} + \left( 1 + y^2 \right) = 0\], given that y = 1, when x = 0.


Find the solution of the differential equation cos y dy + cos x sin y dx = 0 given that y = \[\frac{\pi}{2}\], when x = \[\frac{\pi}{2}\] 

 


\[\frac{dy}{dx} = \tan\left( x + y \right)\]

\[\frac{dy}{dx} = \frac{y^2 - x^2}{2xy}\]

(x2 − y2) dx − 2xy dy = 0


(y2 − 2xy) dx = (x2 − 2xy) dy


The surface area of a balloon being inflated, changes at a rate proportional to time t. If initially its radius is 1 unit and after 3 seconds it is 2 units, find the radius after time t.


In a culture, the bacteria count is 100000. The number is increased by 10% in 2 hours. In how many hours will the count reach 200000, if the rate of growth of bacteria is proportional to the number present?


A bank pays interest by continuous compounding, that is, by treating the interest rate as the instantaneous rate of change of principal. Suppose in an account interest accrues at 8% per year, compounded continuously. Calculate the percentage increase in such an account over one year.


The differential equation of the ellipse \[\frac{x^2}{a^2} + \frac{y^2}{b^2} = C\] is


Solve the following differential equation : \[y^2 dx + \left( x^2 - xy + y^2 \right)dy = 0\] .


Form the differential equation representing the family of curves y = a sin (x + b), where ab are arbitrary constant.


Solve the following differential equation.

`dy/dx = x^2 y + y`


Solve the following differential equation.

`dy/dx + 2xy = x`


A solution of a differential equation which can be obtained from the general solution by giving particular values to the arbitrary constants is called ___________ solution.


y dx – x dy + log x dx = 0


Solve the differential equation sec2y tan x dy + sec2x tan y dx = 0


The solution of differential equation `x^2 ("d"^2y)/("d"x^2)` = 1 is ______


Solve the differential equation `"dy"/"dx"` = 1 + x + y2 + xy2, when y = 0, x = 0.


Solution of `x("d"y)/("d"x) = y + x tan  y/x` is `sin(y/x)` = cx


The value of `dy/dx` if y = |x – 1| + |x – 4| at x = 3 is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×