Advertisements
Advertisements
प्रश्न
Verify that y = − x − 1 is a solution of the differential equation (y − x) dy − (y2 − x2) dx = 0.
उत्तर
We have,
\[y = - x - 1...........(1)\]
Differentiating both sides of (1) with respect to x, we get
\[\frac{dy}{dx} = - 1.............(2)\]
Now,
\[\frac{dy}{dx} - \frac{y^2 - x^2}{y - x}\]
\[ = \frac{dy}{dx} - \left( y + x \right)\]
\[ = - 1 - \left( - x - 1 + x \right) ..........\left[ \text{Using }\left( 1 \right) \text{ and }\left( 2 \right) \right]\]
\[ = - 1 + 1 = 0\]
\[ \Rightarrow \frac{dy}{dx} = \frac{y^2 - x^2}{y - x}\]
\[ \Rightarrow \left( y - x \right)dy = \left( y^2 - x^2 \right)dx\]
\[ \Rightarrow \left( y - x \right)dy - \left( y^2 - x^2 \right)dx = 0\]
Hence, the given function is the solution to the given differential equation.
APPEARS IN
संबंधित प्रश्न
Show that y = AeBx is a solution of the differential equation
Verify that y = \[\frac{a}{x} + b\] is a solution of the differential equation
\[\frac{d^2 y}{d x^2} + \frac{2}{x}\left( \frac{dy}{dx} \right) = 0\]
Verify that y = cx + 2c2 is a solution of the differential equation
For the following differential equation verify that the accompanying function is a solution:
Differential equation | Function |
\[x\frac{dy}{dx} = y\]
|
y = ax |
(1 + x2) dy = xy dx
(ey + 1) cos x dx + ey sin x dy = 0
y (1 + ex) dy = (y + 1) ex dx
(y + xy) dx + (x − xy2) dy = 0
Solve the following differential equation:
\[\left( 1 + y^2 \right) \tan^{- 1} xdx + 2y\left( 1 + x^2 \right)dy = 0\]
Solve the differential equation \[\frac{dy}{dx} = \frac{2x\left( \log x + 1 \right)}{\sin y + y \cos y}\], given that y = 0, when x = 1.
(y2 − 2xy) dx = (x2 − 2xy) dy
2xy dx + (x2 + 2y2) dy = 0
Find the equation of the curve passing through the point (0, 1) if the slope of the tangent to the curve at each of its point is equal to the sum of the abscissa and the product of the abscissa and the ordinate of the point.
The differential equation of the ellipse \[\frac{x^2}{a^2} + \frac{y^2}{b^2} = C\] is
Which of the following is the integrating factor of (x log x) \[\frac{dy}{dx} + y\] = 2 log x?
Solve the following differential equation : \[\left( \sqrt{1 + x^2 + y^2 + x^2 y^2} \right) dx + xy \ dy = 0\].
Verify that the function y = e−3x is a solution of the differential equation \[\frac{d^2 y}{d x^2} + \frac{dy}{dx} - 6y = 0.\]
Solve the differential equation:
`"x"("dy")/("dx")+"y"=3"x"^2-2`
Find the equation of the plane passing through the point (1, -2, 1) and perpendicular to the line joining the points A(3, 2, 1) and B(1, 4, 2).
For the following differential equation find the particular solution.
`dy/ dx = (4x + y + 1),
when y = 1, x = 0
Solve the following differential equation.
xdx + 2y dx = 0
Solve the following differential equation.
`dy /dx +(x-2 y)/ (2x- y)= 0`
Solve the following differential equation.
(x2 − y2 ) dx + 2xy dy = 0
The differential equation of `y = k_1e^x+ k_2 e^-x` is ______.
Choose the correct alternative.
The solution of `x dy/dx = y` log y is
State whether the following is True or False:
The integrating factor of the differential equation `dy/dx - y = x` is e-x
Solve the differential equation `("d"y)/("d"x) + y` = e−x
Choose the correct alternative:
Differential equation of the function c + 4yx = 0 is
Solve the following differential equation
`y log y ("d"x)/("d"y) + x` = log y
Find the particular solution of the following differential equation
`("d"y)/("d"x)` = e2y cos x, when x = `pi/6`, y = 0.
Solution: The given D.E. is `("d"y)/("d"x)` = e2y cos x
∴ `1/"e"^(2y) "d"y` = cos x dx
Integrating, we get
`int square "d"y` = cos x dx
∴ `("e"^(-2y))/(-2)` = sin x + c1
∴ e–2y = – 2sin x – 2c1
∴ `square` = c, where c = – 2c1
This is general solution.
When x = `pi/6`, y = 0, we have
`"e"^0 + 2sin pi/6` = c
∴ c = `square`
∴ particular solution is `square`
The differential equation of all non horizontal lines in a plane is `("d"^2x)/("d"y^2)` = 0