Advertisements
Advertisements
प्रश्न
Choose the correct alternative.
The solution of `x dy/dx = y` log y is
विकल्प
y = aex
y = be2x
y = be-2x
y = eax
उत्तर
The solution of `x dy/dx = y` log y is y = eax
`x dy/dx = y` log y
∴ `dy/(ylogy) = dx/x`
Integrating on both sides, we get
`int dy/(y logy) = int 1/x dx`
∴ log log(y)= log x + log a
∴ log log(y)= log xa
∴ log(y)= ax
∴ y = eax
APPEARS IN
संबंधित प्रश्न
xy (y + 1) dy = (x2 + 1) dx
x cos y dy = (xex log x + ex) dx
xy dy = (y − 1) (x + 1) dx
Solve the following differential equation:
\[y\left( 1 - x^2 \right)\frac{dy}{dx} = x\left( 1 + y^2 \right)\]
Find the particular solution of edy/dx = x + 1, given that y = 3, when x = 0.
Find the curve for which the intercept cut-off by a tangent on x-axis is equal to four times the ordinate of the point of contact.
Find the solution of the differential equation
\[x\sqrt{1 + y^2}dx + y\sqrt{1 + x^2}dy = 0\]
The equation of the curve whose slope is given by \[\frac{dy}{dx} = \frac{2y}{x}; x > 0, y > 0\] and which passes through the point (1, 1) is
The solution of the differential equation \[\frac{dy}{dx} = \frac{ax + g}{by + f}\] represents a circle when
Solve the differential equation:
`e^(dy/dx) = x`
y dx – x dy + log x dx = 0
Solve the differential equation (x2 – yx2)dy + (y2 + xy2)dx = 0
An appropriate substitution to solve the differential equation `"dx"/"dy" = (x^2 log(x/y) - x^2)/(xy log(x/y))` is ______.
The differential equation (1 + y2)x dx – (1 + x2)y dy = 0 represents a family of: