Advertisements
Advertisements
प्रश्न
x cos y dy = (xex log x + ex) dx
उत्तर
We have,
\[x \cos y dy = \left( x e^x \log x + e^x \right) dx\]
\[ \Rightarrow \cos y dy = \left( e^x \log x + \frac{1}{x} e^x \right)dx\]
Integrating both sides, we get
\[\int \cos y dy = \int\left( e^x \log x + \frac{1}{x} e^x \right)dx\]
\[ \Rightarrow \sin y = \log x \int e^x dx - \int\frac{1}{x} e^x dx + \int\frac{1}{x} e^x dx\]
\[ \Rightarrow \sin y = e^x \log x + C\]
\[\text{ Hence, }\sin y = e^x \log x +\text{ C is the required solution }.\]
APPEARS IN
संबंधित प्रश्न
Prove that:
`int_0^(2a)f(x)dx = int_0^af(x)dx + int_0^af(2a - x)dx`
Show that Ax2 + By2 = 1 is a solution of the differential equation x \[\left\{ y\frac{d^2 y}{d x^2} + \left( \frac{dy}{dx} \right)^2 \right\} = y\frac{dy}{dx}\]
Verify that y = − x − 1 is a solution of the differential equation (y − x) dy − (y2 − x2) dx = 0.
For the following differential equation verify that the accompanying function is a solution:
Differential equation | Function |
\[x + y\frac{dy}{dx} = 0\]
|
\[y = \pm \sqrt{a^2 - x^2}\]
|
Differential equation \[\frac{dy}{dx} + y = 2, y \left( 0 \right) = 3\] Function y = e−x + 2
(1 + x) (1 + y2) dx + (1 + y) (1 + x2) dy = 0
Solve the following differential equation:
(xy2 + 2x) dx + (x2 y + 2y) dy = 0
y ex/y dx = (xex/y + y) dy
\[\frac{dy}{dx} = \frac{y}{x} + \sin\left( \frac{y}{x} \right)\]
Find the particular solution of the differential equation \[\frac{dy}{dx} = \frac{xy}{x^2 + y^2}\] given that y = 1 when x = 0.
Solve the following initial value problem:-
\[\frac{dy}{dx} - 3y \cot x = \sin 2x; y = 2\text{ when }x = \frac{\pi}{2}\]
In a simple circuit of resistance R, self inductance L and voltage E, the current `i` at any time `t` is given by L \[\frac{di}{dt}\]+ R i = E. If E is constant and initially no current passes through the circuit, prove that \[i = \frac{E}{R}\left\{ 1 - e^{- \left( R/L \right)t} \right\}.\]
The slope of the tangent at a point P (x, y) on a curve is \[\frac{- x}{y}\]. If the curve passes through the point (3, −4), find the equation of the curve.
The integrating factor of the differential equation (x log x)
\[\frac{dy}{dx} + y = 2 \log x\], is given by
Solve the following differential equation : \[y^2 dx + \left( x^2 - xy + y^2 \right)dy = 0\] .
For the following differential equation find the particular solution.
`dy/ dx = (4x + y + 1),
when y = 1, x = 0
Solve the following differential equation.
`dy /dx +(x-2 y)/ (2x- y)= 0`
Solve the following differential equation.
`(x + y) dy/dx = 1`
The solution of `dy/dx + x^2/y^2 = 0` is ______
Solve the following differential equation `("d"y)/("d"x)` = x2y + y
Solve the following differential equation y log y = `(log y - x) ("d"y)/("d"x)`
The function y = cx is the solution of differential equation `("d"y)/("d"x) = y/x`
Given that `"dy"/"dx"` = yex and x = 0, y = e. Find the value of y when x = 1.
Solve `x^2 "dy"/"dx" - xy = 1 + cos(y/x)`, x ≠ 0 and x = 1, y = `pi/2`
Solve: ydx – xdy = x2ydx.
A man is moving away from a tower 41.6 m high at a rate of 2 m/s. If the eye level of the man is 1.6 m above the ground, then the rate at which the angle of elevation of the top of the tower changes, when he is at a distance of 30 m from the foot of the tower, is