Advertisements
Advertisements
प्रश्न
Find the particular solution of the differential equation \[\frac{dy}{dx} = \frac{xy}{x^2 + y^2}\] given that y = 1 when x = 0.
उत्तर
\[\frac{dy}{dx} = \frac{xy}{x^2 + y^2}\] .....(1)
\[\Rightarrow \frac{dy}{dx} = v + x\frac{dv}{dx}\]
Substituting the value of y = xv and \[\frac{dy}{dx} = v + x\frac{dv}{dx}\] in (1), we get
\[\therefore v + x\frac{dv}{dx} = \frac{x^2 v}{x^2 + x^2 v^2}\]
\[ \Rightarrow x\frac{dv}{dx} = \frac{v}{1 + v^2} - v\]
\[ \Rightarrow x\frac{dv}{dx} = \frac{- v^3}{1 + v^2}\]
\[ \Rightarrow \frac{1 + v^2}{- v^3}dv = \frac{1}{x}dx\]
\[ \Rightarrow \int\frac{1 + v^2}{- v^3}dv = \int\frac{1}{x}dx\]
\[ \Rightarrow \frac{1}{2 v^2} - \log v = \log x + C\]
\[\Rightarrow \frac{1}{2 \left( \frac{y}{x} \right)^2} - \log\frac{y}{x} = \log x + C\]
\[ \Rightarrow \frac{x^2}{2 y^2} - \log\frac{y}{x} = \log x + C . . . . . \left( 2 \right)\]
\[ \Rightarrow \frac{0}{2} - \log\frac{1}{0} = \log0 + C\]
\[ \Rightarrow C = 0\]
Substituting the value of C in (2), we get
\[\frac{x^2}{2 y^2} - \log\frac{y}{x} = \log x\]
\[ \Rightarrow \frac{x^2}{2 y^2} = \log x + \log\frac{y}{x}\]
\[ \Rightarrow \frac{x^2}{2 y^2} = \log y\]
APPEARS IN
संबंधित प्रश्न
If 1, `omega` and `omega^2` are the cube roots of unity, prove `(a + b omega + c omega^2)/(c + s omega + b omega^2) = omega^2`
Solve the equation for x: `sin^(-1) 5/x + sin^(-1) 12/x = pi/2, x != 0`
Show that the differential equation of which \[y = 2\left( x^2 - 1 \right) + c e^{- x^2}\] is a solution is \[\frac{dy}{dx} + 2xy = 4 x^3\]
For the following differential equation verify that the accompanying function is a solution:
Differential equation | Function |
\[y = \left( \frac{dy}{dx} \right)^2\]
|
\[y = \frac{1}{4} \left( x \pm a \right)^2\]
|
Differential equation \[\frac{d^2 y}{d x^2} - \frac{dy}{dx} = 0, y \left( 0 \right) = 2, y'\left( 0 \right) = 1\]
Function y = ex + 1
Differential equation \[\frac{dy}{dx} + y = 2, y \left( 0 \right) = 3\] Function y = e−x + 2
Solve the following differential equation:
\[\left( 1 + y^2 \right) \tan^{- 1} xdx + 2y\left( 1 + x^2 \right)dy = 0\]
x2 dy + y (x + y) dx = 0
Solve the following initial value problem:-
\[y' + y = e^x , y\left( 0 \right) = \frac{1}{2}\]
Solve the following initial value problem:-
\[\tan x\left( \frac{dy}{dx} \right) = 2x\tan x + x^2 - y; \tan x \neq 0\] given that y = 0 when \[x = \frac{\pi}{2}\]
If the marginal cost of manufacturing a certain item is given by C' (x) = \[\frac{dC}{dx}\] = 2 + 0.15 x. Find the total cost function C (x), given that C (0) = 100.
Experiments show that radium disintegrates at a rate proportional to the amount of radium present at the moment. Its half-life is 1590 years. What percentage will disappear in one year?
Find the equation of the curve which passes through the origin and has the slope x + 3y− 1 at any point (x, y) on it.
The differential equation satisfied by ax2 + by2 = 1 is
Find the coordinates of the centre, foci and equation of directrix of the hyperbola x2 – 3y2 – 4x = 8.
Find the equation of the plane passing through the point (1, -2, 1) and perpendicular to the line joining the points A(3, 2, 1) and B(1, 4, 2).
Solve the following differential equation.
`(dθ)/dt = − k (θ − θ_0)`
For each of the following differential equations find the particular solution.
(x − y2 x) dx − (y + x2 y) dy = 0, when x = 2, y = 0
A solution of a differential equation which can be obtained from the general solution by giving particular values to the arbitrary constants is called ___________ solution.
Solve the differential equation sec2y tan x dy + sec2x tan y dx = 0
Solve the differential equation `("d"y)/("d"x) + y` = e−x
Solve the differential equation (x2 – yx2)dy + (y2 + xy2)dx = 0
The function y = cx is the solution of differential equation `("d"y)/("d"x) = y/x`
Solve the following differential equation
sec2 x tan y dx + sec2 y tan x dy = 0
Solution: sec2 x tan y dx + sec2 y tan x dy = 0
∴ `(sec^2x)/tanx "d"x + square` = 0
Integrating, we get
`square + int (sec^2y)/tany "d"y` = log c
Each of these integral is of the type
`int ("f'"(x))/("f"(x)) "d"x` = log |f(x)| + log c
∴ the general solution is
`square + log |tan y|` = log c
∴ log |tan x . tan y| = log c
`square`
This is the general solution.
Solve `x^2 "dy"/"dx" - xy = 1 + cos(y/x)`, x ≠ 0 and x = 1, y = `pi/2`
Solve the differential equation `"dy"/"dx"` = 1 + x + y2 + xy2, when y = 0, x = 0.
The differential equation of all non horizontal lines in a plane is `("d"^2x)/("d"y^2)` = 0