Advertisements
Advertisements
प्रश्न
Solve the following initial value problem:-
\[y' + y = e^x , y\left( 0 \right) = \frac{1}{2}\]
उत्तर
We have,
\[y' + y = e^x \]
\[ \Rightarrow \frac{dy}{dx} + y = e^x . . . . . \left( 1 \right)\]
Clearly, it is a linear differential equation of the form
\[\frac{dy}{dx} + Py = Q\]
\[\text{ where }P = 1\text{ and }Q = e^x \]
\[ \therefore I . F . = e^{\int P\ dx} \]
\[ = e^{\int1 dx} \]
\[ = e^x \]
\[\text{ Multiplying both sides of }\left( 1 \right)\text{ by }I . F . = e^x ,\text{ we get }\]
\[ e^x \left( \frac{dy}{dx} + y \right) = e^x e^x \]
\[ \Rightarrow e^x \frac{dy}{dx} + e^x y = e^{2x} \]
Integrating both sides with respect to x, we get
\[y e^x = \int e^{2x} dx + C\]
\[ \Rightarrow y e^x = \frac{e^{2x}}{2} + C . . . . . \left( 2 \right)\]
Now,
\[y\left( 0 \right) = \frac{1}{2}\]
\[ \therefore \frac{1}{2} e^0 = \frac{e^0}{2} + C\]
\[ \Rightarrow C = 0\]
\[\text{ Putting the value of C in }\left( 2 \right),\text{ we get }\]
\[y e^x = \frac{e^{2x}}{2}\]
\[ \Rightarrow e^x = \frac{e^x}{2}\]
\[\text{ Hence, }y = \frac{e^x}{2}\text{ is the required solution.}\]
APPEARS IN
संबंधित प्रश्न
Show that the function y = A cos x + B sin x is a solution of the differential equation \[\frac{d^2 y}{d x^2} + y = 0\]
Hence, the given function is the solution to the given differential equation. \[\frac{c - x}{1 + cx}\] is a solution of the differential equation \[(1+x^2)\frac{dy}{dx}+(1+y^2)=0\].
For the following differential equation verify that the accompanying function is a solution:
Differential equation | Function |
\[y = \left( \frac{dy}{dx} \right)^2\]
|
\[y = \frac{1}{4} \left( x \pm a \right)^2\]
|
Differential equation \[\frac{d^2 y}{d x^2} - y = 0, y \left( 0 \right) = 2, y' \left( 0 \right) = 0\] Function y = ex + e−x
xy (y + 1) dy = (x2 + 1) dx
(ey + 1) cos x dx + ey sin x dy = 0
x cos2 y dx = y cos2 x dy
xy dy = (y − 1) (x + 1) dx
Solve the following differential equation:
\[y e^\frac{x}{y} dx = \left( x e^\frac{x}{y} + y^2 \right)dy, y \neq 0\]
In a bank principal increases at the rate of r% per year. Find the value of r if ₹100 double itself in 10 years (loge 2 = 0.6931).
Find the particular solution of the differential equation
(1 – y2) (1 + log x) dx + 2xy dy = 0, given that y = 0 when x = 1.
Solve the following initial value problem:-
\[\frac{dy}{dx} + y \tan x = 2x + x^2 \tan x, y\left( 0 \right) = 1\]
Define a differential equation.
The differential equation obtained on eliminating A and B from y = A cos ωt + B sin ωt, is
If xmyn = (x + y)m+n, prove that \[\frac{dy}{dx} = \frac{y}{x} .\]
Show that y = ae2x + be−x is a solution of the differential equation \[\frac{d^2 y}{d x^2} - \frac{dy}{dx} - 2y = 0\]
Form the differential equation representing the family of parabolas having vertex at origin and axis along positive direction of x-axis.
In the following example, verify that the given function is a solution of the corresponding differential equation.
Solution | D.E. |
xy = log y + k | y' (1 - xy) = y2 |
Form the differential equation from the relation x2 + 4y2 = 4b2
For each of the following differential equations find the particular solution.
(x − y2 x) dx − (y + x2 y) dy = 0, when x = 2, y = 0
Solve the following differential equation.
`dy /dx +(x-2 y)/ (2x- y)= 0`
Solve the following differential equation.
`dy/dx + y = e ^-x`
State whether the following is True or False:
The degree of a differential equation is the power of the highest ordered derivative when all the derivatives are made free from negative and/or fractional indices if any.
Solve:
(x + y) dy = a2 dx
`xy dy/dx = x^2 + 2y^2`
Solve the differential equation (x2 – yx2)dy + (y2 + xy2)dx = 0
Solve the following differential equation `("d"y)/("d"x)` = cos(x + y)
Solution: `("d"y)/("d"x)` = cos(x + y) ......(1)
Put `square`
∴ `1 + ("d"y)/("d"x) = "dv"/("d"x)`
∴ `("d"y)/("d"x) = "dv"/("d"x) - 1`
∴ (1) becomes `"dv"/("d"x) - 1` = cos v
∴ `"dv"/("d"x)` = 1 + cos v
∴ `square` dv = dx
Integrating, we get
`int 1/(1 + cos "v") "d"v = int "d"x`
∴ `int 1/(2cos^2 ("v"/2)) "dv" = int "d"x`
∴ `1/2 int square "dv" = int "d"x`
∴ `1/2* (tan("v"/2))/(1/2)` = x + c
∴ `square` = x + c
There are n students in a school. If r % among the students are 12 years or younger, which of the following expressions represents the number of students who are older than 12?
The differential equation (1 + y2)x dx – (1 + x2)y dy = 0 represents a family of: