मराठी

Solve the Following Initial Value Problem:- Y ′ + Y = E X , Y ( 0 ) = 1 2 - Mathematics

Advertisements
Advertisements

प्रश्न

Solve the following initial value problem:-

y+y=ex,y(0)=12

बेरीज

उत्तर

We have,
y+y=ex
dydx+y=ex.....(1)
Clearly, it is a linear differential equation of the form 
dydx+Py=Q
 where P=1 and Q=ex
I.F.=eP dx
=e1dx
=ex
 Multiplying both sides of (1) by I.F.=ex, we get 
ex(dydx+y)=exex
exdydx+exy=e2x
Integrating both sides with respect to x, we get
yex=e2xdx+C
yex=e2x2+C.....(2)
Now, 
y(0)=12
12e0=e02+C
C=0
 Putting the value of C in (2), we get 
yex=e2x2
ex=ex2
 Hence, y=ex2 is the required solution.

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 22: Differential Equations - Exercise 22.10 [पृष्ठ १०७]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 22 Differential Equations
Exercise 22.10 | Q 37.01 | पृष्ठ १०७

व्हिडिओ ट्यूटोरियलVIEW ALL [2]

संबंधित प्रश्‍न

d3xdt3+d2xdt2+(dxdt)2=et

yd2xdy2=y2+1

Verify that y = 4 sin 3x is a solution of the differential equation d2ydx2+9y=0


Verify that y2 = 4ax is a solution of the differential equation y = x dydx+adxdy


Verify that y = cx + 2c2 is a solution of the differential equation 

2(dydx)2+xdydxy=0.

Differential equation d2ydx2+y=0,y(0)=1,y(0)=1 Function y = sin x + cos x


(x+2)dydx=x2+3x+7

dydx=x5tan1(x3)

xdydx+1=0;y(1)=0

dydx=1+y2y3

dydx=xexlogx+exxcosy

dydx+cosxsinycosy=0

dydx=(cos2xsin2x)cos2y

dydx=2e2xy2,y(0)=1

Find the particular solution of the differential equation dydx=4xy2  given that y = 1, when x = 0.


x2 dy + y (x + y) dx = 0


dydx=yxy+x

2xydydx=x2+y2

dydx=x2y+x

[xx2+y2y2]dx+xy dy=0

Solve the following initial value problem:-

dydx+ycotx=2cosx,y(π2)=0


Solve the following initial value problem:-
tanx(dydx)=2xtanx+x2y;tanx0 given that y = 0 when x=π2


Find the curve for which the intercept cut-off by a tangent on x-axis is equal to four times the ordinate of the point of contact.

 

Find the equation of the curve passing through the point (0, 1) if the slope of the tangent to the curve at each of its point is equal to the sum of the abscissa and the product of the abscissa and the ordinate of the point.


The slope of a curve at each of its points is equal to the square of the abscissa of the point. Find the particular curve through the point (−1, 1).


Find the equation of the curve that passes through the point (0, a) and is such that at any point (x, y) on it, the product of its slope and the ordinate is equal to the abscissa.


The integrating factor of the differential equation (x log x)
dydx+y=2logx, is given by


The solution of the differential equation dydxy(x+1)x=0 is given by


Show that y = ae2x + be−x is a solution of the differential equation d2ydx2dydx2y=0


Solve the following differential equation.

y3-dydx=xdydx


For each of the following differential equations find the particular solution.

y(1+logx)dxdy-xlogx=0,

when x=e, y = e2.


Solve the following differential equation.

dr + (2r)dθ= 8dθ


Solve the following differential equation y2dx + (xy + x2) dy = 0


Solve the following differential equation 

sec2 x tan y dx + sec2 y tan x dy = 0

Solution: sec2 x tan y dx + sec2 y tan x dy = 0

sec2xtanx dx+ = 0

Integrating, we get

+sec2ytany dy = log c

Each of these integral is of the type

f'(x)f(x) dx = log |f(x)| + log c

∴ the general solution is

+log|tany| = log c

∴ log |tan x . tan y| = log c

This is the general solution.


Solve x2dydx-xy=1+cos(yx), x ≠ 0 and x = 1, y = π2


An appropriate substitution to solve the differential equation dxdy=x2log(xy)-x2xylog(xy) is ______.


Solve the differential equation dydx+xy=xy2 and find the particular solution when y = 4, x = 1.


The value of dydx if y = |x – 1| + |x – 4| at x = 3 is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×
Our website is made possible by ad-free subscriptions or displaying online advertisements to our visitors.
If you don't like ads you can support us by buying an ad-free subscription or please consider supporting us by disabling your ad blocker. Thank you.