मराठी

The Solution of the Differential Equation D Y D X − Y ( X + 1 ) X = 0 is Given by - Mathematics

Advertisements
Advertisements

प्रश्न

The solution of the differential equation \[\frac{dy}{dx} - \frac{y\left( x + 1 \right)}{x} = 0\] is given by

पर्याय

  • y = xex + C

  • x = yex

  • y = x + C

  • xy = ex + C

MCQ

उत्तर

y = xex + C

 

We have,
\[\frac{dy}{dx} - \frac{y\left( x + 1 \right)}{x} = 0\]
\[ \Rightarrow \frac{dy}{dx} = \frac{y\left( x + 1 \right)}{x}\]
\[ \Rightarrow \frac{dy}{y} = \frac{\left( x + 1 \right)}{x}dx\]
Integrating both sides, we get
\[\int\frac{dy}{y} = \int\frac{\left( x + 1 \right)}{x}dx\]
\[ \Rightarrow \int\frac{dy}{y} = \int dx + \int\frac{1}{x}dx\]
\[ \Rightarrow \log y = x + \log x + C\]
\[ \Rightarrow \log y - \log x = x + C\]
\[ \Rightarrow \log \left( \frac{y}{x} \right) = x + C\]
\[ \Rightarrow \frac{y}{x} = e^{x + C} \]
\[ \Rightarrow y = x e^{x + C}\]

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 22: Differential Equations - MCQ [पृष्ठ १४०]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 22 Differential Equations
MCQ | Q 12 | पृष्ठ १४०

व्हिडिओ ट्यूटोरियलVIEW ALL [2]

संबंधित प्रश्‍न

Verify that y = − x − 1 is a solution of the differential equation (y − x) dy − (y2 − x2) dx = 0.


\[\frac{dy}{dx} = x^5 + x^2 - \frac{2}{x}, x \neq 0\]

\[\left( x^2 + 1 \right)\frac{dy}{dx} = 1\]

(1 + x2) dy = xy dx


\[\frac{dy}{dx} = \left( e^x + 1 \right) y\]

\[\sqrt{1 + x^2} dy + \sqrt{1 + y^2} dx = 0\]

Solve the following differential equation:
\[\text{ cosec }x \log y \frac{dy}{dx} + x^2 y^2 = 0\]


Solve the following differential equation:
\[xy\frac{dy}{dx} = 1 + x + y + xy\]

 


\[\frac{dr}{dt} = - rt, r\left( 0 \right) = r_0\]

Solve the differential equation \[\left( 1 + x^2 \right)\frac{dy}{dx} + \left( 1 + y^2 \right) = 0\], given that y = 1, when x = 0.


Find the particular solution of the differential equation \[\frac{dy}{dx} = - 4x y^2\]  given that y = 1, when x = 0.


The volume of a spherical balloon being inflated changes at a constant rate. If initially its radius is 3 units and after 3 seconds it is 6 units. Find the radius of the balloon after `t` seconds.


\[\frac{dy}{dx} = \sec\left( x + y \right)\]

x2 dy + y (x + y) dx = 0


\[2xy\frac{dy}{dx} = x^2 + y^2\]

Solve the following initial value problem:-
\[x\frac{dy}{dx} - y = \log x, y\left( 1 \right) = 0\]


In a culture, the bacteria count is 100000. The number is increased by 10% in 2 hours. In how many hours will the count reach 200000, if the rate of growth of bacteria is proportional to the number present?


Find the equation of the curve which passes through the point (2, 2) and satisfies the differential equation
\[y - x\frac{dy}{dx} = y^2 + \frac{dy}{dx}\]


Write the differential equation representing the family of straight lines y = Cx + 5, where C is an arbitrary constant.


The solution of the differential equation \[\frac{dy}{dx} = \frac{ax + g}{by + f}\] represents a circle when


Solve the following differential equation : \[y^2 dx + \left( x^2 - xy + y^2 \right)dy = 0\] .


Show that y = ae2x + be−x is a solution of the differential equation \[\frac{d^2 y}{d x^2} - \frac{dy}{dx} - 2y = 0\]


Find the coordinates of the centre, foci and equation of directrix of the hyperbola x2 – 3y2 – 4x = 8.


Solve the differential equation:

`"x"("dy")/("dx")+"y"=3"x"^2-2`


The price of six different commodities for years 2009 and year 2011 are as follows: 

Commodities A B C D E F

Price in 2009 (₹)

35 80 25 30 80 x
Price in 2011 (₹) 50 y 45 70 120 105

The Index number for the year 2011 taking 2009 as the base year for the above data was calculated to be 125. Find the values of x andy if the total price in 2009 is ₹ 360.


In the following example, verify that the given function is a solution of the corresponding differential equation.

Solution D.E.
y = xn `x^2(d^2y)/dx^2 - n xx (xdy)/dx + ny =0`

Solve the following differential equation.

y dx + (x - y2 ) dy = 0


Solve the following differential equation.

`dy/dx + 2xy = x`


Choose the correct alternative.

The integrating factor of `dy/dx -  y = e^x `is ex, then its solution is


Select and write the correct alternative from the given option for the question 

Differential equation of the function c + 4yx = 0 is


Solve the differential equation xdx + 2ydy = 0


Integrating factor of the differential equation `x "dy"/"dx" - y` = sinx is ______.


Solve the differential equation `"dy"/"dx"` = 1 + x + y2 + xy2, when y = 0, x = 0.


lf the straight lines `ax + by + p` = 0 and `x cos alpha + y sin alpha = p` are inclined at an angle π/4 and concurrent with the straight line `x sin alpha - y cos alpha` = 0, then the value of `a^2 + b^2` is


A man is moving away from a tower 41.6 m high at a rate of 2 m/s. If the eye level of the man is 1.6 m above the ground, then the rate at which the angle of elevation of the top of the tower changes, when he is at a distance of 30 m from the foot of the tower, is


Solve the differential equation `dy/dx + xy = xy^2` and find the particular solution when y = 4, x = 1.


The value of `dy/dx` if y = |x – 1| + |x – 4| at x = 3 is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×