Advertisements
Advertisements
प्रश्न
Find the equation of the curve which passes through the point (2, 2) and satisfies the differential equation
\[y - x\frac{dy}{dx} = y^2 + \frac{dy}{dx}\]
उत्तर
We have,
\[y - x\frac{dy}{dx} = y^2 + \frac{dy}{dx}\]
\[\Rightarrow \frac{dy}{dx}\left( x + 1 \right) = y\left( 1 - y \right)\]
\[ \Rightarrow \frac{dy}{y\left( 1 - y \right)} = \frac{dx}{\left( x + 1 \right)}\]
Integrating both sides, we get
\[\int\frac{dy}{y\left( 1 - y \right)} = \int\frac{dx}{x + 1}\]
\[ \Rightarrow \int\left( \frac{1}{y} + \frac{1}{1 - y} \right)dy = \int\frac{dx}{x + 1}\]
\[ \Rightarrow \log \left| y \right| - \log \left| 1 - y \right| = \log \left| x + 1 \right| + C . . . . . \left( 1 \right)\]
\[\text{ Since the curve passes throught the point }\left( 2, 2 \right),\text{ it satisfies the equation of the curve . }\]
\[ \Rightarrow \log \left| 2 \right| - \log \left| 1 - 2 \right| = \log \left| 2 + 1 \right| + C\]
\[ \Rightarrow C = \log \left| \frac{2}{3} \right|\]
\[\text{ Putting the value of C in }\left( 1 \right),\text{ we get }\]
\[\log \left| y \right| - \log \left| 1 - y \right| = \log \left| x + 1 \right| + \log \left| \frac{2}{3} \right|\]
\[ \Rightarrow \log \left| \frac{y}{\left( 1 - y \right)} \right| = \log \left| \frac{2\left( x + 1 \right)}{3} \right|\]
\[ \Rightarrow \left| \frac{y}{\left( 1 - y \right)} \right| = \left| \frac{2\left( x + 1 \right)}{3} \right|\]
\[ \Rightarrow \frac{y}{\left( 1 - y \right)} = \pm \frac{2\left( x + 1 \right)}{3}\]
\[ \Rightarrow \frac{y}{\left( 1 - y \right)} = \frac{2\left( x + 1 \right)}{3} or \frac{y}{\left( 1 - y \right)} = - \frac{2\left( x + 1 \right)}{3}\]
\[\text{ Here, given point }\left( 2, 2 \right)\text{ does not satisfy } \frac{y}{\left( 1 - y \right)} = \frac{2\left( x + 1 \right)}{3}\]
\[\text{ But it satisfy }\frac{y}{\left( 1 - y \right)} = - \frac{2\left( x + 1 \right)}{3}\]
\[ \therefore \frac{y}{\left( 1 - y \right)} = - \frac{2\left( x + 1 \right)}{3}\]
\[ \Rightarrow \frac{y}{\left( y - 1 \right)} = \frac{2\left( x + 1 \right)}{3}\]
\[ \Rightarrow 3y = 2\left( x + 1 \right)\left( y - 1 \right)\]
\[ \Rightarrow 3y = 2xy - 2x + 2y - 2\]
\[ \Rightarrow 2xy - 2x - y - 2 = 0\]
APPEARS IN
संबंधित प्रश्न
Show that the function y = A cos x + B sin x is a solution of the differential equation \[\frac{d^2 y}{d x^2} + y = 0\]
Verify that y2 = 4ax is a solution of the differential equation y = x \[\frac{dy}{dx} + a\frac{dx}{dy}\]
For the following differential equation verify that the accompanying function is a solution:
Differential equation | Function |
\[x + y\frac{dy}{dx} = 0\]
|
\[y = \pm \sqrt{a^2 - x^2}\]
|
Differential equation \[x\frac{dy}{dx} = 1, y\left( 1 \right) = 0\]
Function y = log x
Differential equation \[\frac{d^2 y}{d x^2} + y = 0, y \left( 0 \right) = 0, y' \left( 0 \right) = 1\] Function y = sin x
Differential equation \[\frac{d^2 y}{d x^2} - 2\frac{dy}{dx} + y = 0, y \left( 0 \right) = 1, y' \left( 0 \right) = 2\] Function y = xex + ex
y (1 + ex) dy = (y + 1) ex dx
Solve the following differential equation:
\[y e^\frac{x}{y} dx = \left( x e^\frac{x}{y} + y^2 \right)dy, y \neq 0\]
The population of a city increases at a rate proportional to the number of inhabitants present at any time t. If the population of the city was 200000 in 1990 and 250000 in 2000, what will be the population in 2010?
Write the differential equation representing the family of straight lines y = Cx + 5, where C is an arbitrary constant.
The integrating factor of the differential equation (x log x)
\[\frac{dy}{dx} + y = 2 \log x\], is given by
The solution of the differential equation y1 y3 = y22 is
Which of the following is the integrating factor of (x log x) \[\frac{dy}{dx} + y\] = 2 log x?
Which of the following differential equations has y = C1 ex + C2 e−x as the general solution?
The integrating factor of the differential equation \[x\frac{dy}{dx} - y = 2 x^2\]
The integrating factor of the differential equation \[\left( 1 - y^2 \right)\frac{dx}{dy} + yx = ay\left( - 1 < y < 1 \right)\] is ______.
Form the differential equation representing the family of parabolas having vertex at origin and axis along positive direction of x-axis.
Form the differential equation of the family of parabolas having vertex at origin and axis along positive y-axis.
Solve the differential equation:
`"x"("dy")/("dx")+"y"=3"x"^2-2`
In the following example, verify that the given function is a solution of the corresponding differential equation.
Solution | D.E. |
xy = log y + k | y' (1 - xy) = y2 |
Determine the order and degree of the following differential equations.
Solution | D.E |
y = aex + be−x | `(d^2y)/dx^2= 1` |
Solve the following differential equation.
xdx + 2y dx = 0
Solve the following differential equation.
`(x + a) dy/dx = – y + a`
Choose the correct alternative.
Bacteria increases at the rate proportional to the number present. If the original number M doubles in 3 hours, then the number of bacteria will be 4M in
Solve the differential equation:
`e^(dy/dx) = x`
Solve the differential equation xdx + 2ydy = 0
The function y = cx is the solution of differential equation `("d"y)/("d"x) = y/x`
Solution of `x("d"y)/("d"x) = y + x tan y/x` is `sin(y/x)` = cx