Advertisements
Advertisements
प्रश्न
उत्तर
We have,
\[\left( x - 1 \right)\frac{dy}{dx} = 2 x^3 y\]
\[ \Rightarrow \frac{1}{y}dy = \frac{2 x^3}{x - 1}dx\]
Integrating both sides, we get
\[\int\frac{1}{y}dy = \int\frac{2 x^3}{x - 1}dx\]
\[ \Rightarrow \log \left| y \right| = 2\int\frac{x^3 - 1 + 1}{x - 1}dx\]
\[ \Rightarrow \log \left| y \right| = 2\left[ \int\frac{x^3 - 1}{x - 1}dx + \int\frac{1}{x - 1}dx \right]\]
\[ \Rightarrow \log \left| y \right| = 2\left[ \int\frac{\left( x - 1 \right)\left( x^2 + x + 1 \right)}{x - 1}dx + \int\frac{1}{x - 1}dx \right]\]
\[ \Rightarrow \log \left| y \right| = 2\left[ \int\left( x^2 + x + 1 \right) dx + \int\frac{1}{x - 1}dx \right]\]
\[ \Rightarrow \log \left| y \right| = 2 \left[ \frac{x^3}{3} + \frac{x^2}{2} + x + \log \left| x - 1 \right| \right] + C\]
\[ \Rightarrow \log \left| y \right| = \frac{2}{3} x^3 + x^2 + 2x + \log \left| x - 1 \right|^2 + C\]
\[ \Rightarrow y = e^{\frac{2}{3} x^3 + x^2 + 2x + \log \left| x - 1 \right|^2 + C}\]
\[ \Rightarrow y = e^C \times e^{{log} \left| x - 1 \right|^2} \times e^{\frac{2}{3} x^3 + x^2 + 2x}\]
\[ \Rightarrow y = C_1 \left| x - 1 \right|^2 e^{\frac{2}{3} x^3 + x^2 + 2x} ..........\left[ \because e^{ln\ x} = x\text{ and where, }C_1 = e^C \right]\]
\[ \therefore y = C_1 \left| x - 1 \right|^2 e^{\frac{2}{3} x^3 + x^2 + 2x} \text{ is required solution.} \]
APPEARS IN
संबंधित प्रश्न
Show that the differential equation of which \[y = 2\left( x^2 - 1 \right) + c e^{- x^2}\] is a solution is \[\frac{dy}{dx} + 2xy = 4 x^3\]
Differential equation \[\frac{d^2 y}{d x^2} - \frac{dy}{dx} = 0, y \left( 0 \right) = 2, y'\left( 0 \right) = 1\]
Function y = ex + 1
y (1 + ex) dy = (y + 1) ex dx
(x + y) (dx − dy) = dx + dy
y ex/y dx = (xex/y + y) dy
Solve the following differential equations:
\[\frac{dy}{dx} = \frac{y}{x}\left\{ \log y - \log x + 1 \right\}\]
Solve the following initial value problem:-
\[\frac{dy}{dx} + 2y = e^{- 2x} \sin x, y\left( 0 \right) = 0\]
Solve the following initial value problem:-
\[x\frac{dy}{dx} - y = \left( x + 1 \right) e^{- x} , y\left( 1 \right) = 0\]
Solve the following initial value problem:-
\[\frac{dy}{dx} + y \tan x = 2x + x^2 \tan x, y\left( 0 \right) = 1\]
Show that the equation of the curve whose slope at any point is equal to y + 2x and which passes through the origin is y + 2 (x + 1) = 2e2x.
Find the equation of the curve which passes through the origin and has the slope x + 3y− 1 at any point (x, y) on it.
The slope of a curve at each of its points is equal to the square of the abscissa of the point. Find the particular curve through the point (−1, 1).
Write the differential equation obtained eliminating the arbitrary constant C in the equation xy = C2.
If sin x is an integrating factor of the differential equation \[\frac{dy}{dx} + Py = Q\], then write the value of P.
The differential equation \[x\frac{dy}{dx} - y = x^2\], has the general solution
Which of the following is the integrating factor of (x log x) \[\frac{dy}{dx} + y\] = 2 log x?
Form the differential equation representing the family of curves y = a sin (x + b), where a, b are arbitrary constant.
Form the differential equation of the family of circles having centre on y-axis and radius 3 unit.
Find the coordinates of the centre, foci and equation of directrix of the hyperbola x2 – 3y2 – 4x = 8.
Solve the following differential equation.
y2 dx + (xy + x2 ) dy = 0
Solve the following differential equation.
`(x + a) dy/dx = – y + a`
`xy dy/dx = x^2 + 2y^2`
Solve the differential equation sec2y tan x dy + sec2x tan y dx = 0
Solve: `("d"y)/("d"x) + 2/xy` = x2
Solve the following differential equation
`yx ("d"y)/("d"x)` = x2 + 2y2
Solve the following differential equation `("d"y)/("d"x)` = x2y + y
An appropriate substitution to solve the differential equation `"dx"/"dy" = (x^2 log(x/y) - x^2)/(xy log(x/y))` is ______.
Integrating factor of the differential equation `x "dy"/"dx" - y` = sinx is ______.
The differential equation of all non horizontal lines in a plane is `("d"^2x)/("d"y^2)` = 0