मराठी

( X − 1 ) D Y D X = 2 X 3 Y - Mathematics

Advertisements
Advertisements

प्रश्न

\[\left( x - 1 \right)\frac{dy}{dx} = 2 x^3 y\]
बेरीज

उत्तर

We have, 
\[\left( x - 1 \right)\frac{dy}{dx} = 2 x^3 y\]
\[ \Rightarrow \frac{1}{y}dy = \frac{2 x^3}{x - 1}dx\]
Integrating both sides, we get 
\[\int\frac{1}{y}dy = \int\frac{2 x^3}{x - 1}dx\]
\[ \Rightarrow \log \left| y \right| = 2\int\frac{x^3 - 1 + 1}{x - 1}dx\]
\[ \Rightarrow \log \left| y \right| = 2\left[ \int\frac{x^3 - 1}{x - 1}dx + \int\frac{1}{x - 1}dx \right]\]
\[ \Rightarrow \log \left| y \right| = 2\left[ \int\frac{\left( x - 1 \right)\left( x^2 + x + 1 \right)}{x - 1}dx + \int\frac{1}{x - 1}dx \right]\]
\[ \Rightarrow \log \left| y \right| = 2\left[ \int\left( x^2 + x + 1 \right) dx + \int\frac{1}{x - 1}dx \right]\]
\[ \Rightarrow \log \left| y \right| = 2 \left[ \frac{x^3}{3} + \frac{x^2}{2} + x + \log \left| x - 1 \right| \right] + C\]
\[ \Rightarrow \log \left| y \right| = \frac{2}{3} x^3 + x^2 + 2x + \log \left| x - 1 \right|^2 + C\]
\[ \Rightarrow y = e^{\frac{2}{3} x^3 + x^2 + 2x + \log \left| x - 1 \right|^2 + C}\]
\[ \Rightarrow y = e^C \times e^{{log} \left| x - 1 \right|^2} \times e^{\frac{2}{3} x^3 + x^2 + 2x}\]
\[ \Rightarrow y = C_1 \left| x - 1 \right|^2 e^{\frac{2}{3} x^3 + x^2 + 2x} ..........\left[ \because e^{ln\ x} = x\text{ and where, }C_1 = e^C \right]\]
\[ \therefore y = C_1 \left| x - 1 \right|^2 e^{\frac{2}{3} x^3 + x^2 + 2x} \text{ is required solution.} \]

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 22: Differential Equations - Exercise 22.07 [पृष्ठ ५५]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 22 Differential Equations
Exercise 22.07 | Q 34 | पृष्ठ ५५

व्हिडिओ ट्यूटोरियलVIEW ALL [2]

संबंधित प्रश्‍न

\[\left( \frac{dy}{dx} \right)^2 + \frac{1}{dy/dx} = 2\]

\[\sqrt{1 + \left( \frac{dy}{dx} \right)^2} = \left( c\frac{d^2 y}{d x^2} \right)^{1/3}\]

Show that the differential equation of which \[y = 2\left( x^2 - 1 \right) + c e^{- x^2}\]  is a solution is \[\frac{dy}{dx} + 2xy = 4 x^3\]


Differential equation \[\frac{d^2 y}{d x^2} - \frac{dy}{dx} = 0, y \left( 0 \right) = 2, y'\left( 0 \right) = 1\]

Function y = ex + 1


\[\frac{dy}{dx} = x^5 + x^2 - \frac{2}{x}, x \neq 0\]

\[\frac{dy}{dx} = \cos^3 x \sin^2 x + x\sqrt{2x + 1}\]

\[\frac{dy}{dx} = x \log x\]

\[\left( x^3 + x^2 + x + 1 \right)\frac{dy}{dx} = 2 x^2 + x\]

\[\frac{dy}{dx} = \frac{1 + y^2}{y^3}\]

y (1 + ex) dy = (y + 1) ex dx


\[2x\frac{dy}{dx} = 3y, y\left( 1 \right) = 2\]

(x + y) (dx − dy) = dx + dy


y ex/y dx = (xex/y + y) dy


Solve the following differential equations:
\[\frac{dy}{dx} = \frac{y}{x}\left\{ \log y - \log x + 1 \right\}\]


Solve the following initial value problem:-

\[\frac{dy}{dx} + 2y = e^{- 2x} \sin x, y\left( 0 \right) = 0\]


Solve the following initial value problem:-

\[x\frac{dy}{dx} - y = \left( x + 1 \right) e^{- x} , y\left( 1 \right) = 0\]


Solve the following initial value problem:-

\[\frac{dy}{dx} + y \tan x = 2x + x^2 \tan x, y\left( 0 \right) = 1\]


Show that the equation of the curve whose slope at any point is equal to y + 2x and which passes through the origin is y + 2 (x + 1) = 2e2x.


Find the equation of the curve which passes through the origin and has the slope x + 3y− 1 at any point (x, y) on it.


The slope of a curve at each of its points is equal to the square of the abscissa of the point. Find the particular curve through the point (−1, 1).


Write the differential equation obtained eliminating the arbitrary constant C in the equation xy = C2.


If sin x is an integrating factor of the differential equation \[\frac{dy}{dx} + Py = Q\], then write the value of P.


The differential equation \[x\frac{dy}{dx} - y = x^2\], has the general solution


Which of the following is the integrating factor of (x log x) \[\frac{dy}{dx} + y\] = 2 log x?


Form the differential equation representing the family of curves y = a sin (x + b), where ab are arbitrary constant.


Form the differential equation of the family of circles having centre on y-axis and radius 3 unit.


Find the coordinates of the centre, foci and equation of directrix of the hyperbola x2 – 3y2 – 4x = 8.


Solve the following differential equation.

y2 dx + (xy + x2 ) dy = 0


Solve the following differential equation.

`(x + a) dy/dx = – y + a`


`xy dy/dx  = x^2 + 2y^2`


Solve the differential equation sec2y tan x dy + sec2x tan y dx = 0


Solve: `("d"y)/("d"x) + 2/xy` = x2 


Solve the following differential equation

`yx ("d"y)/("d"x)` = x2 + 2y2 


Solve the following differential equation `("d"y)/("d"x)` = x2y + y


An appropriate substitution to solve the differential equation `"dx"/"dy" = (x^2 log(x/y) - x^2)/(xy log(x/y))` is ______.


Integrating factor of the differential equation `x "dy"/"dx" - y` = sinx is ______.


The differential equation of all non horizontal lines in a plane is `("d"^2x)/("d"y^2)` = 0


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×