Advertisements
Advertisements
प्रश्न
Which of the following is the integrating factor of (x log x) \[\frac{dy}{dx} + y\] = 2 log x?
पर्याय
x
ex
log x
log (log x)
उत्तर
log x
We have,
\[\left( x \log x \right)\frac{dy}{dx} + y = 2 \log x\]
Dividing both sides by (x log x) we get,
\[\frac{dy}{dx} + \frac{y}{x \log x} = 2\frac{\log x}{x \log x}\]
\[ \Rightarrow \frac{dy}{dx} + \frac{y}{x \log x} = \frac{2}{x}\]
\[ \Rightarrow \frac{dy}{dx} + \left( \frac{1}{x \log x} \right)y = \frac{2}{x}\]
\[\text{ Comparing with }\frac{dy}{dx} + Py = Q \text{ we get, }\]
\[P = \frac{1}{x \log x} \text{ and }Q = \frac{2}{x}\]
\[\text{ Now, }I . F = e^{\int P\ dx} = e^{\int\frac{1}{x\log x}dx} \]
\[ = e^{log\left( \log x \right)} \]
\[ = \log x\]
APPEARS IN
संबंधित प्रश्न
Assume that a rain drop evaporates at a rate proportional to its surface area. Form a differential equation involving the rate of change of the radius of the rain drop.
Verify that y = log \[\left( x + \sqrt{x^2 + a^2} \right)^2\] satisfies the differential equation \[\left( a^2 + x^2 \right)\frac{d^2 y}{d x^2} + x\frac{dy}{dx} = 0\]
Differential equation \[\frac{d^2 y}{d x^2} - 2\frac{dy}{dx} + y = 0, y \left( 0 \right) = 1, y' \left( 0 \right) = 2\] Function y = xex + ex
(sin x + cos x) dy + (cos x − sin x) dx = 0
(y + xy) dx + (x − xy2) dy = 0
(y2 + 1) dx − (x2 + 1) dy = 0
Solve the differential equation \[\left( 1 + x^2 \right)\frac{dy}{dx} + \left( 1 + y^2 \right) = 0\], given that y = 1, when x = 0.
Find the particular solution of edy/dx = x + 1, given that y = 3, when x = 0.
\[\frac{dy}{dx} = \frac{y}{x} + \sin\left( \frac{y}{x} \right)\]
Solve the following initial value problem:-
\[\frac{dy}{dx} + y \tan x = 2x + x^2 \tan x, y\left( 0 \right) = 1\]
In a culture, the bacteria count is 100000. The number is increased by 10% in 2 hours. In how many hours will the count reach 200000, if the rate of growth of bacteria is proportional to the number present?
The rate of increase in the number of bacteria in a certain bacteria culture is proportional to the number present. Given the number triples in 5 hrs, find how many bacteria will be present after 10 hours. Also find the time necessary for the number of bacteria to be 10 times the number of initial present.
Find the curve for which the intercept cut-off by a tangent on x-axis is equal to four times the ordinate of the point of contact.
Find the equation of the curve that passes through the point (0, a) and is such that at any point (x, y) on it, the product of its slope and the ordinate is equal to the abscissa.
Define a differential equation.
The equation of the curve whose slope is given by \[\frac{dy}{dx} = \frac{2y}{x}; x > 0, y > 0\] and which passes through the point (1, 1) is
The differential equation satisfied by ax2 + by2 = 1 is
What is integrating factor of \[\frac{dy}{dx}\] + y sec x = tan x?
Find the differential equation whose general solution is
x3 + y3 = 35ax.
Solve the following differential equation.
`y^3 - dy/dx = x dy/dx`
Choose the correct alternative.
The integrating factor of `dy/dx - y = e^x `is ex, then its solution is
`xy dy/dx = x^2 + 2y^2`
Solve the differential equation xdx + 2ydy = 0
For the differential equation, find the particular solution
`("d"y)/("d"x)` = (4x +y + 1), when y = 1, x = 0
Solve the following differential equation
`y log y ("d"x)/("d"y) + x` = log y
An appropriate substitution to solve the differential equation `"dx"/"dy" = (x^2 log(x/y) - x^2)/(xy log(x/y))` is ______.
Solve the differential equation `"dy"/"dx" + 2xy` = y