Advertisements
Advertisements
प्रश्न
\[\frac{dy}{dx} = \frac{y}{x} + \sin\left( \frac{y}{x} \right)\]
उत्तर
We have,
\[\frac{dy}{dx} = \frac{y}{x} + \sin \left( \frac{y}{x} \right)\]
This is a homogeneous differential equation.
\[\text{Putting }y = vx\text{ and }\frac{dy}{dx} = v + x\frac{dv}{dx},\text{ we get}\]
\[v + x\frac{dv}{dx} = v + \sin v\]
\[ \Rightarrow x\frac{dv}{dx} = v + \sin v - v\]
\[ \Rightarrow \frac{1}{\sin v}dv = \frac{1}{x}dx\]
Integrating both sides, we get
\[\int \frac{1}{\sin v}dv = \int\frac{1}{x}dx\]
\[ \Rightarrow \int cosec\ v\ dv = \int\frac{1}{x}dx\]
\[ \Rightarrow \log \left| \tan \frac{v}{2} \right| = \log \left| x \right| + \log C\]
\[ \Rightarrow \log \left| \tan \frac{v}{2} \right| = \log \left| x \right| + \log C\]
\[ \Rightarrow \log \left| \tan \frac{v}{2} \right| = \log \left| Cx \right|\]
\[ \Rightarrow \tan \frac{v}{2} = Cx\]
\[\text{Putting }v = \frac{y}{x},\text{ we get}\]
\[ \Rightarrow \tan \left( \frac{y}{2x} \right) = Cx\]
\[\text{Hence, }\tan \left( \frac{y}{2x} \right) = Cx\text{ is the required solution.}\]
APPEARS IN
संबंधित प्रश्न
If 1, `omega` and `omega^2` are the cube roots of unity, prove `(a + b omega + c omega^2)/(c + s omega + b omega^2) = omega^2`
Find the differential equation of all the parabolas with latus rectum '4a' and whose axes are parallel to x-axis.
Form the differential equation of the family of hyperbolas having foci on x-axis and centre at the origin.
Verify that y = 4 sin 3x is a solution of the differential equation \[\frac{d^2 y}{d x^2} + 9y = 0\]
Show that the differential equation of which \[y = 2\left( x^2 - 1 \right) + c e^{- x^2}\] is a solution is \[\frac{dy}{dx} + 2xy = 4 x^3\]
Show that y = e−x + ax + b is solution of the differential equation\[e^x \frac{d^2 y}{d x^2} = 1\]
For the following differential equation verify that the accompanying function is a solution:
Differential equation | Function |
\[x + y\frac{dy}{dx} = 0\]
|
\[y = \pm \sqrt{a^2 - x^2}\]
|
For the following differential equation verify that the accompanying function is a solution:
Differential equation | Function |
\[x^3 \frac{d^2 y}{d x^2} = 1\]
|
\[y = ax + b + \frac{1}{2x}\]
|
For the following differential equation verify that the accompanying function is a solution:
Differential equation | Function |
\[y = \left( \frac{dy}{dx} \right)^2\]
|
\[y = \frac{1}{4} \left( x \pm a \right)^2\]
|
Differential equation \[\frac{d^2 y}{d x^2} - 2\frac{dy}{dx} + y = 0, y \left( 0 \right) = 1, y' \left( 0 \right) = 2\] Function y = xex + ex
xy (y + 1) dy = (x2 + 1) dx
x cos y dy = (xex log x + ex) dx
\[x^2 \frac{dy}{dx} = x^2 + xy + y^2 \]
2xy dx + (x2 + 2y2) dy = 0
The surface area of a balloon being inflated, changes at a rate proportional to time t. If initially its radius is 1 unit and after 3 seconds it is 2 units, find the radius after time t.
Radium decomposes at a rate proportional to the quantity of radium present. It is found that in 25 years, approximately 1.1% of a certain quantity of radium has decomposed. Determine approximately how long it will take for one-half of the original amount of radium to decompose?
The differential equation obtained on eliminating A and B from y = A cos ωt + B sin ωt, is
The differential equation of the ellipse \[\frac{x^2}{a^2} + \frac{y^2}{b^2} = C\] is
Which of the following is the integrating factor of (x log x) \[\frac{dy}{dx} + y\] = 2 log x?
y2 dx + (x2 − xy + y2) dy = 0
Solve the following differential equation.
y2 dx + (xy + x2 ) dy = 0
Solve the following differential equation.
`x^2 dy/dx = x^2 +xy - y^2`
Solve the following differential equation.
`dy/dx + y` = 3
The differential equation of `y = k_1e^x+ k_2 e^-x` is ______.
Choose the correct alternative.
The solution of `x dy/dx = y` log y is
Choose the correct alternative.
The integrating factor of `dy/dx - y = e^x `is ex, then its solution is
Solve:
(x + y) dy = a2 dx
For the differential equation, find the particular solution
`("d"y)/("d"x)` = (4x +y + 1), when y = 1, x = 0
Given that `"dy"/"dx" = "e"^-2x` and y = 0 when x = 5. Find the value of x when y = 3.
The differential equation (1 + y2)x dx – (1 + x2)y dy = 0 represents a family of: