मराठी

D Y D X = Y X + Sin ( Y X ) - Mathematics

Advertisements
Advertisements

प्रश्न

\[\frac{dy}{dx} = \frac{y}{x} + \sin\left( \frac{y}{x} \right)\]

 
बेरीज

उत्तर

We have,

\[\frac{dy}{dx} = \frac{y}{x} + \sin \left( \frac{y}{x} \right)\]
This is a homogeneous differential equation.
\[\text{Putting }y = vx\text{ and }\frac{dy}{dx} = v + x\frac{dv}{dx},\text{ we get}\]
\[v + x\frac{dv}{dx} = v + \sin v\]
\[ \Rightarrow x\frac{dv}{dx} = v + \sin v - v\]
\[ \Rightarrow \frac{1}{\sin v}dv = \frac{1}{x}dx\]
Integrating both sides, we get
\[\int \frac{1}{\sin v}dv = \int\frac{1}{x}dx\]
\[ \Rightarrow \int cosec\ v\ dv = \int\frac{1}{x}dx\]
\[ \Rightarrow \log \left| \tan \frac{v}{2} \right| = \log \left| x \right| + \log C\]
\[ \Rightarrow \log \left| \tan \frac{v}{2} \right| = \log \left| x \right| + \log C\]
\[ \Rightarrow \log \left| \tan \frac{v}{2} \right| = \log \left| Cx \right|\]
\[ \Rightarrow \tan \frac{v}{2} = Cx\]
\[\text{Putting }v = \frac{y}{x},\text{ we get}\]
\[ \Rightarrow \tan \left( \frac{y}{2x} \right) = Cx\]
\[\text{Hence, }\tan \left( \frac{y}{2x} \right) = Cx\text{ is the required solution.}\]

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 22: Differential Equations - Exercise 22.09 [पृष्ठ ८३]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 22 Differential Equations
Exercise 22.09 | Q 19 | पृष्ठ ८३

व्हिडिओ ट्यूटोरियलVIEW ALL [2]

संबंधित प्रश्‍न

If 1, `omega` and `omega^2` are the cube roots of unity, prove `(a + b omega + c omega^2)/(c + s omega +  b omega^2) =  omega^2`


\[\frac{d^2 y}{d x^2} + 4y = 0\]

\[\sqrt[3]{\frac{d^2 y}{d x^2}} = \sqrt{\frac{dy}{dx}}\]

\[\frac{d^4 y}{d x^4} = \left\{ c + \left( \frac{dy}{dx} \right)^2 \right\}^{3/2}\]

\[x^2 \left( \frac{d^2 y}{d x^2} \right)^3 + y \left( \frac{dy}{dx} \right)^4 + y^4 = 0\]

Find the differential equation of all the parabolas with latus rectum '4a' and whose axes are parallel to x-axis.


Form the differential equation of the family of hyperbolas having foci on x-axis and centre at the origin.


Verify that y = 4 sin 3x is a solution of the differential equation \[\frac{d^2 y}{d x^2} + 9y = 0\]


Show that the differential equation of which \[y = 2\left( x^2 - 1 \right) + c e^{- x^2}\]  is a solution is \[\frac{dy}{dx} + 2xy = 4 x^3\]


Show that y = e−x + ax + b is solution of the differential equation\[e^x \frac{d^2 y}{d x^2} = 1\]

 


For the following differential equation verify that the accompanying function is a solution:

Differential equation Function
\[x + y\frac{dy}{dx} = 0\]
\[y = \pm \sqrt{a^2 - x^2}\]

For the following differential equation verify that the accompanying function is a solution:

Differential equation Function
\[x^3 \frac{d^2 y}{d x^2} = 1\]
\[y = ax + b + \frac{1}{2x}\]

For the following differential equation verify that the accompanying function is a solution:

Differential equation Function
\[y = \left( \frac{dy}{dx} \right)^2\]
\[y = \frac{1}{4} \left( x \pm a \right)^2\]

Differential equation \[\frac{d^2 y}{d x^2} - 2\frac{dy}{dx} + y = 0, y \left( 0 \right) = 1, y' \left( 0 \right) = 2\] Function y = xex + ex


\[\frac{1}{x}\frac{dy}{dx} = \tan^{- 1} x, x \neq 0\]

\[\sqrt{a + x} dy + x\ dx = 0\]

\[\frac{dy}{dx} + \frac{1 + y^2}{y} = 0\]

xy (y + 1) dy = (x2 + 1) dx


x cos y dy = (xex log x + ex) dx


\[2x\frac{dy}{dx} = 3y, y\left( 1 \right) = 2\]

\[\frac{dy}{dx} = \frac{y^2 - x^2}{2xy}\]

\[x^2 \frac{dy}{dx} = x^2 + xy + y^2 \]


2xy dx + (x2 + 2y2) dy = 0


The surface area of a balloon being inflated, changes at a rate proportional to time t. If initially its radius is 1 unit and after 3 seconds it is 2 units, find the radius after time t.


Radium decomposes at a rate proportional to the quantity of radium present. It is found that in 25 years, approximately 1.1% of a certain quantity of radium has decomposed. Determine approximately how long it will take for one-half of the original amount of  radium to decompose?


The differential equation obtained on eliminating A and B from y = A cos ωt + B sin ωt, is


The differential equation of the ellipse \[\frac{x^2}{a^2} + \frac{y^2}{b^2} = C\] is


Which of the following is the integrating factor of (x log x) \[\frac{dy}{dx} + y\] = 2 log x?


y2 dx + (x2 − xy + y2) dy = 0


Solve the following differential equation.

y2 dx + (xy + x2 ) dy = 0


Solve the following differential equation.

`x^2 dy/dx = x^2 +xy - y^2`


Solve the following differential equation.

`dy/dx + y` = 3


The differential equation of `y = k_1e^x+ k_2 e^-x` is ______.


Choose the correct alternative.

The solution of `x dy/dx = y` log y is


Choose the correct alternative.

The integrating factor of `dy/dx -  y = e^x `is ex, then its solution is


Solve:

(x + y) dy = a2 dx


For the differential equation, find the particular solution

`("d"y)/("d"x)` = (4x +y + 1), when y = 1, x = 0


Given that `"dy"/"dx" = "e"^-2x` and y = 0 when x = 5. Find the value of x when y = 3.


The differential equation (1 + y2)x dx – (1 + x2)y dy = 0 represents a family of:


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×