मराठी

√ a + X D Y + X D X = 0 - Mathematics

Advertisements
Advertisements

प्रश्न

\[\sqrt{a + x} dy + x\ dx = 0\]
बेरीज

उत्तर

We have, 
\[\sqrt{a + x}dy + x\ dx = 0\]
\[ \Rightarrow \sqrt{a + x}dy = - xdx\]
\[ \Rightarrow dy = \frac{- x}{\sqrt{a + x}}dx\]
\[ \Rightarrow dy = - \frac{\left( x + a - a \right)}{\sqrt{a + x}}dx\]
\[ \Rightarrow dy = - \left( \sqrt{a + x} - \frac{a}{\sqrt{a + x}} \right)dx\]
Integrating both sides, we get
\[\int dy = - \int\left( \sqrt{a + x} - \frac{a}{\sqrt{a + x}} \right)dx\]
\[ \Rightarrow y = - \frac{2 \left( a + x \right)^\frac{3}{2}}{3} + 2a\sqrt{a + x} + C\]
\[ \Rightarrow y + \frac{2}{3} \left( a + x \right)^\frac{3}{2} - 2a\sqrt{a + x} = C\]
\[\text{ Hence, }y + \frac{2}{3} \left( a + x \right)^\frac{3}{2} - 2a\sqrt{a + x} = \text{C is the solution to the given differential equation.}\]

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 22: Differential Equations - Exercise 22.05 [पृष्ठ ३४]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 22 Differential Equations
Exercise 22.05 | Q 17 | पृष्ठ ३४

व्हिडिओ ट्यूटोरियलVIEW ALL [2]

संबंधित प्रश्‍न

\[\frac{d^4 y}{d x^4} = \left\{ c + \left( \frac{dy}{dx} \right)^2 \right\}^{3/2}\]

\[y\frac{d^2 x}{d y^2} = y^2 + 1\]

Form the differential equation of the family of hyperbolas having foci on x-axis and centre at the origin.


Show that y = ax3 + bx2 + c is a solution of the differential equation \[\frac{d^3 y}{d x^3} = 6a\].

 


\[\frac{dy}{dx} = x^2 + x - \frac{1}{x}, x \neq 0\]

\[\left( x + 2 \right)\frac{dy}{dx} = x^2 + 3x + 7\]

\[\frac{dy}{dx} = \log x\]

\[\frac{dy}{dx} - x \sin^2 x = \frac{1}{x \log x}\]

\[\frac{dy}{dx} = x e^x - \frac{5}{2} + \cos^2 x\]

\[y\sqrt{1 + x^2} + x\sqrt{1 + y^2}\frac{dy}{dx} = 0\]

tan y dx + sec2 y tan x dy = 0


\[2x\frac{dy}{dx} = 3y, y\left( 1 \right) = 2\]

\[\frac{dr}{dt} = - rt, r\left( 0 \right) = r_0\]

\[\frac{dy}{dx} = y \sin 2x, y\left( 0 \right) = 1\]

In a culture the bacteria count is 100000. The number is increased by 10% in 2 hours. In how many hours will the count reach 200000, if the rate of growth of bacteria is proportional to the number present.


x2 dy + y (x + y) dx = 0


\[2xy\frac{dy}{dx} = x^2 + y^2\]

3x2 dy = (3xy + y2) dx


\[\frac{dy}{dx} = \frac{x}{2y + x}\]

Solve the following initial value problem:-
\[x\frac{dy}{dx} - y = \log x, y\left( 1 \right) = 0\]


Solve the following initial value problem:-

\[\frac{dy}{dx} + y\cot x = 2\cos x, y\left( \frac{\pi}{2} \right) = 0\]


Define a differential equation.


The differential equation satisfied by ax2 + by2 = 1 is


Which of the following transformations reduce the differential equation \[\frac{dz}{dx} + \frac{z}{x}\log z = \frac{z}{x^2} \left( \log z \right)^2\] into the form \[\frac{du}{dx} + P\left( x \right) u = Q\left( x \right)\]


Show that y = ae2x + be−x is a solution of the differential equation \[\frac{d^2 y}{d x^2} - \frac{dy}{dx} - 2y = 0\]


For the following differential equation find the particular solution.

`(x + 1) dy/dx − 1 = 2e^(−y)`,

when y = 0, x = 1


For  the following differential equation find the particular solution.

`dy/ dx = (4x + y + 1),

when  y = 1, x = 0


Solve the following differential equation.

`dy/dx + y = e ^-x`


State whether the following is True or False:

The integrating factor of the differential equation `dy/dx - y = x` is e-x


Solve the differential equation:

dr = a r dθ − θ dr


Select and write the correct alternative from the given option for the question 

Differential equation of the function c + 4yx = 0 is


Solve the differential equation sec2y tan x dy + sec2x tan y dx = 0


For the differential equation, find the particular solution

`("d"y)/("d"x)` = (4x +y + 1), when y = 1, x = 0


The function y = ex is solution  ______ of differential equation


Verify y = `a + b/x` is solution of `x(d^2y)/(dx^2) + 2 (dy)/(dx)` = 0

y = `a + b/x`

`(dy)/(dx) = square`

`(d^2y)/(dx^2) = square`

Consider `x(d^2y)/(dx^2) + 2(dy)/(dx)`

= `x square + 2 square`

= `square`

Hence y = `a + b/x` is solution of `square`


The integrating factor of the differential equation `"dy"/"dx" (x log x) + y` = 2logx is ______.


An appropriate substitution to solve the differential equation `"dx"/"dy" = (x^2 log(x/y) - x^2)/(xy log(x/y))` is ______.


Solution of `x("d"y)/("d"x) = y + x tan  y/x` is `sin(y/x)` = cx


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×