Advertisements
Advertisements
प्रश्न
उत्तर
We have,
\[\sqrt{a + x}dy + x\ dx = 0\]
\[ \Rightarrow \sqrt{a + x}dy = - xdx\]
\[ \Rightarrow dy = \frac{- x}{\sqrt{a + x}}dx\]
\[ \Rightarrow dy = - \frac{\left( x + a - a \right)}{\sqrt{a + x}}dx\]
\[ \Rightarrow dy = - \left( \sqrt{a + x} - \frac{a}{\sqrt{a + x}} \right)dx\]
Integrating both sides, we get
\[\int dy = - \int\left( \sqrt{a + x} - \frac{a}{\sqrt{a + x}} \right)dx\]
\[ \Rightarrow y = - \frac{2 \left( a + x \right)^\frac{3}{2}}{3} + 2a\sqrt{a + x} + C\]
\[ \Rightarrow y + \frac{2}{3} \left( a + x \right)^\frac{3}{2} - 2a\sqrt{a + x} = C\]
\[\text{ Hence, }y + \frac{2}{3} \left( a + x \right)^\frac{3}{2} - 2a\sqrt{a + x} = \text{C is the solution to the given differential equation.}\]
APPEARS IN
संबंधित प्रश्न
Form the differential equation of the family of hyperbolas having foci on x-axis and centre at the origin.
Show that y = ax3 + bx2 + c is a solution of the differential equation \[\frac{d^3 y}{d x^3} = 6a\].
tan y dx + sec2 y tan x dy = 0
In a culture the bacteria count is 100000. The number is increased by 10% in 2 hours. In how many hours will the count reach 200000, if the rate of growth of bacteria is proportional to the number present.
x2 dy + y (x + y) dx = 0
3x2 dy = (3xy + y2) dx
Solve the following initial value problem:-
\[x\frac{dy}{dx} - y = \log x, y\left( 1 \right) = 0\]
Solve the following initial value problem:-
\[\frac{dy}{dx} + y\cot x = 2\cos x, y\left( \frac{\pi}{2} \right) = 0\]
Define a differential equation.
The differential equation satisfied by ax2 + by2 = 1 is
Which of the following transformations reduce the differential equation \[\frac{dz}{dx} + \frac{z}{x}\log z = \frac{z}{x^2} \left( \log z \right)^2\] into the form \[\frac{du}{dx} + P\left( x \right) u = Q\left( x \right)\]
Show that y = ae2x + be−x is a solution of the differential equation \[\frac{d^2 y}{d x^2} - \frac{dy}{dx} - 2y = 0\]
For the following differential equation find the particular solution.
`(x + 1) dy/dx − 1 = 2e^(−y)`,
when y = 0, x = 1
For the following differential equation find the particular solution.
`dy/ dx = (4x + y + 1),
when y = 1, x = 0
Solve the following differential equation.
`dy/dx + y = e ^-x`
State whether the following is True or False:
The integrating factor of the differential equation `dy/dx - y = x` is e-x
Solve the differential equation:
dr = a r dθ − θ dr
Select and write the correct alternative from the given option for the question
Differential equation of the function c + 4yx = 0 is
Solve the differential equation sec2y tan x dy + sec2x tan y dx = 0
For the differential equation, find the particular solution
`("d"y)/("d"x)` = (4x +y + 1), when y = 1, x = 0
The function y = ex is solution ______ of differential equation
Verify y = `a + b/x` is solution of `x(d^2y)/(dx^2) + 2 (dy)/(dx)` = 0
y = `a + b/x`
`(dy)/(dx) = square`
`(d^2y)/(dx^2) = square`
Consider `x(d^2y)/(dx^2) + 2(dy)/(dx)`
= `x square + 2 square`
= `square`
Hence y = `a + b/x` is solution of `square`
The integrating factor of the differential equation `"dy"/"dx" (x log x) + y` = 2logx is ______.
An appropriate substitution to solve the differential equation `"dx"/"dy" = (x^2 log(x/y) - x^2)/(xy log(x/y))` is ______.
Solution of `x("d"y)/("d"x) = y + x tan y/x` is `sin(y/x)` = cx