Advertisements
Advertisements
प्रश्न
उत्तर
We have,
\[\frac{dy}{dx} = x\ e^x - \frac{5}{2} + \cos^2 x\]
\[ \Rightarrow \frac{dy}{dx} = x\ e^x - \frac{5}{2} + \frac{\cos 2x}{2} + \frac{1}{2}\]
\[ \Rightarrow \frac{dy}{dx} = x\ e^x + \frac{\cos 2x}{2} - 2\]
\[ \Rightarrow dy = \left( x\ e^x + \frac{\cos 2x}{2} - 2 \right)dx\]
Integrating both sides, we get
\[\int dy = \int\left( x\ e^x + \frac{\cos 2x}{2} - 2 \right)dx\]
\[ \Rightarrow y = \int x\ e^x dx + \frac{1}{2}\int\cos 2x dx - 2\int dx\]
\[ \Rightarrow y = x\int e^x dx - \int\left[ \frac{d}{dx}\left( x \right)\int e^x dx \right]dx + \frac{1}{2} \times \frac{\sin 2x}{2} - 2x\]
\[ \Rightarrow y = x\ e^x - e^x + \frac{1}{4}\sin 2x - 2x + C\]
\[\text{ Hence, }y = x\ e^x - e^x + \frac{1}{4}\sin 2x - 2x +\text{ C is the solution to the given differential equation.}\]
APPEARS IN
संबंधित प्रश्न
Assume that a rain drop evaporates at a rate proportional to its surface area. Form a differential equation involving the rate of change of the radius of the rain drop.
Verify that y = 4 sin 3x is a solution of the differential equation \[\frac{d^2 y}{d x^2} + 9y = 0\]
Hence, the given function is the solution to the given differential equation. \[\frac{c - x}{1 + cx}\] is a solution of the differential equation \[(1+x^2)\frac{dy}{dx}+(1+y^2)=0\].
Verify that \[y = e^{m \cos^{- 1} x}\] satisfies the differential equation \[\left( 1 - x^2 \right)\frac{d^2 y}{d x^2} - x\frac{dy}{dx} - m^2 y = 0\]
Differential equation \[\frac{d^2 y}{d x^2} - 3\frac{dy}{dx} + 2y = 0, y \left( 0 \right) = 1, y' \left( 0 \right) = 3\] Function y = ex + e2x
(1 + x2) dy = xy dx
dy + (x + 1) (y + 1) dx = 0
(x + y) (dx − dy) = dx + dy
A bank pays interest by continuous compounding, that is, by treating the interest rate as the instantaneous rate of change of principal. Suppose in an account interest accrues at 8% per year, compounded continuously. Calculate the percentage increase in such an account over one year.
The normal to a given curve at each point (x, y) on the curve passes through the point (3, 0). If the curve contains the point (3, 4), find its equation.
Find the equation of the curve that passes through the point (0, a) and is such that at any point (x, y) on it, the product of its slope and the ordinate is equal to the abscissa.
The integrating factor of the differential equation (x log x)
\[\frac{dy}{dx} + y = 2 \log x\], is given by
If xmyn = (x + y)m+n, prove that \[\frac{dy}{dx} = \frac{y}{x} .\]
Form the differential equation of the family of parabolas having vertex at origin and axis along positive y-axis.
Find the coordinates of the centre, foci and equation of directrix of the hyperbola x2 – 3y2 – 4x = 8.
Find the particular solution of the differential equation `"dy"/"dx" = "xy"/("x"^2+"y"^2),`given that y = 1 when x = 0
Solve the following differential equation.
`dy/dx = x^2 y + y`
Solve the following differential equation.
`y^3 - dy/dx = x dy/dx`
Solve the following differential equation.
`(x + y) dy/dx = 1`
Solve the following differential equation.
dr + (2r)dθ= 8dθ
State whether the following is True or False:
The integrating factor of the differential equation `dy/dx - y = x` is e-x
Solve the differential equation:
`e^(dy/dx) = x`
Solve the differential equation (x2 – yx2)dy + (y2 + xy2)dx = 0
The solution of differential equation `x^2 ("d"^2y)/("d"x^2)` = 1 is ______
Solve `x^2 "dy"/"dx" - xy = 1 + cos(y/x)`, x ≠ 0 and x = 1, y = `pi/2`
An appropriate substitution to solve the differential equation `"dx"/"dy" = (x^2 log(x/y) - x^2)/(xy log(x/y))` is ______.
Integrating factor of the differential equation `x "dy"/"dx" - y` = sinx is ______.
Solve: ydx – xdy = x2ydx.