मराठी

Solve dydxx2dydx-xy=1+cos(yx), x ≠ 0 and x = 1, y = π2 - Mathematics

Advertisements
Advertisements

प्रश्न

Solve `x^2 "dy"/"dx" - xy = 1 + cos(y/x)`, x ≠ 0 and x = 1, y = `pi/2`

बेरीज

उत्तर

Given equation can be written as

`x^2 "dy"/"dx" - xy = 2cos^2 (y/2x)`, x ≠ 0.

⇒ `(x^2 "dy"/"dx" - xy)/(2cos^2 (y/(2x))` = 1

⇒ `sec^2 (y/(2x))/2 [x^2 "dy"/"dx" - xy]` = 1

Dividing both sides by x3, we get

`sec^2(y/(2x))/2 [(x "dy"/"dx" - y)/x^2] = 1/x^3`

⇒ `"d"/"dx"[tan(y/(2x))] = 1/x^3`

Integrating both sides, we get

`tan(y/(2x)) = (-1)/(2x^2) + "k"`

Substituting x = 1, y = `pi/2`, we get

k = `3/2`

Therefore, `tan(y/(2x)) = -1/(2x^2) + 3/2` is the required solution.

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 9: Differential Equations - Solved Examples [पृष्ठ १८५]

APPEARS IN

एनसीईआरटी एक्झांप्लर Mathematics [English] Class 12
पाठ 9 Differential Equations
Solved Examples | Q 10 | पृष्ठ १८५

व्हिडिओ ट्यूटोरियलVIEW ALL [2]

संबंधित प्रश्‍न

Show that y = AeBx is a solution of the differential equation

\[\frac{d^2 y}{d x^2} = \frac{1}{y} \left( \frac{dy}{dx} \right)^2\]

Show that y = e−x + ax + b is solution of the differential equation\[e^x \frac{d^2 y}{d x^2} = 1\]

 


\[\frac{1}{x}\frac{dy}{dx} = \tan^{- 1} x, x \neq 0\]

x cos y dy = (xex log x + ex) dx


(y + xy) dx + (x − xy2) dy = 0


\[2x\frac{dy}{dx} = 5y, y\left( 1 \right) = 1\]

\[\frac{dy}{dx} = 2xy, y\left( 0 \right) = 1\]

\[\frac{dy}{dx} + 1 = e^{x + y}\]

\[x\frac{dy}{dx} = x + y\]

y ex/y dx = (xex/y + y) dy


\[\left[ x\sqrt{x^2 + y^2} - y^2 \right] dx + xy\ dy = 0\]

Find the particular solution of the differential equation \[\frac{dy}{dx} = \frac{xy}{x^2 + y^2}\] given that y = 1 when x = 0.

 


Find the equation of the curve which passes through the point (2, 2) and satisfies the differential equation
\[y - x\frac{dy}{dx} = y^2 + \frac{dy}{dx}\]


Define a differential equation.


The solution of the differential equation \[\frac{dy}{dx} = \frac{ax + g}{by + f}\] represents a circle when


Solve the following differential equation : \[\left( \sqrt{1 + x^2 + y^2 + x^2 y^2} \right) dx + xy \ dy = 0\].


y2 dx + (x2 − xy + y2) dy = 0


Form the differential equation representing the family of parabolas having vertex at origin and axis along positive direction of x-axis.


Find the equation of the plane passing through the point (1, -2, 1) and perpendicular to the line joining the points A(3, 2, 1) and B(1, 4, 2). 


Determine the order and degree of the following differential equations.

Solution D.E.
y = 1 − logx `x^2(d^2y)/dx^2 = 1`

Solve the following differential equation.

xdx + 2y dx = 0


Solve the following differential equation.

x2y dx − (x3 + y3 ) dy = 0


Solve the following differential equation.

y dx + (x - y2 ) dy = 0


Solve the following differential equation.

`dy/dx + 2xy = x`


Choose the correct alternative.

The solution of `x dy/dx = y` log y is


A solution of a differential equation which can be obtained from the general solution by giving particular values to the arbitrary constants is called ___________ solution.


Solve:

(x + y) dy = a2 dx


Solve the differential equation `("d"y)/("d"x) + y` = e−x 


Choose the correct alternative:

Differential equation of the function c + 4yx = 0 is


Solve the following differential equation `("d"y)/("d"x)` = cos(x + y)

Solution: `("d"y)/("d"x)` = cos(x + y)    ......(1)

Put `square`

∴ `1 + ("d"y)/("d"x) = "dv"/("d"x)`

∴ `("d"y)/("d"x) = "dv"/("d"x) - 1`

∴ (1) becomes `"dv"/("d"x) - 1` = cos v

∴ `"dv"/("d"x)` = 1 + cos v

∴ `square` dv = dx

Integrating, we get

`int 1/(1 + cos "v")  "d"v = int  "d"x`

∴ `int 1/(2cos^2 ("v"/2))  "dv" = int  "d"x`

∴ `1/2 int square  "dv" = int  "d"x`

∴ `1/2* (tan("v"/2))/(1/2)` = x + c

∴ `square` = x + c


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×