Advertisements
Advertisements
प्रश्न
Solve `x^2 "dy"/"dx" - xy = 1 + cos(y/x)`, x ≠ 0 and x = 1, y = `pi/2`
उत्तर
Given equation can be written as
`x^2 "dy"/"dx" - xy = 2cos^2 (y/2x)`, x ≠ 0.
⇒ `(x^2 "dy"/"dx" - xy)/(2cos^2 (y/(2x))` = 1
⇒ `sec^2 (y/(2x))/2 [x^2 "dy"/"dx" - xy]` = 1
Dividing both sides by x3, we get
`sec^2(y/(2x))/2 [(x "dy"/"dx" - y)/x^2] = 1/x^3`
⇒ `"d"/"dx"[tan(y/(2x))] = 1/x^3`
Integrating both sides, we get
`tan(y/(2x)) = (-1)/(2x^2) + "k"`
Substituting x = 1, y = `pi/2`, we get
k = `3/2`
Therefore, `tan(y/(2x)) = -1/(2x^2) + 3/2` is the required solution.
APPEARS IN
संबंधित प्रश्न
Show that y = AeBx is a solution of the differential equation
Show that y = e−x + ax + b is solution of the differential equation\[e^x \frac{d^2 y}{d x^2} = 1\]
x cos y dy = (xex log x + ex) dx
(y + xy) dx + (x − xy2) dy = 0
y ex/y dx = (xex/y + y) dy
Find the particular solution of the differential equation \[\frac{dy}{dx} = \frac{xy}{x^2 + y^2}\] given that y = 1 when x = 0.
Find the equation of the curve which passes through the point (2, 2) and satisfies the differential equation
\[y - x\frac{dy}{dx} = y^2 + \frac{dy}{dx}\]
Define a differential equation.
The solution of the differential equation \[\frac{dy}{dx} = \frac{ax + g}{by + f}\] represents a circle when
Solve the following differential equation : \[\left( \sqrt{1 + x^2 + y^2 + x^2 y^2} \right) dx + xy \ dy = 0\].
y2 dx + (x2 − xy + y2) dy = 0
Form the differential equation representing the family of parabolas having vertex at origin and axis along positive direction of x-axis.
Find the equation of the plane passing through the point (1, -2, 1) and perpendicular to the line joining the points A(3, 2, 1) and B(1, 4, 2).
Determine the order and degree of the following differential equations.
Solution | D.E. |
y = 1 − logx | `x^2(d^2y)/dx^2 = 1` |
Solve the following differential equation.
xdx + 2y dx = 0
Solve the following differential equation.
x2y dx − (x3 + y3 ) dy = 0
Solve the following differential equation.
y dx + (x - y2 ) dy = 0
Solve the following differential equation.
`dy/dx + 2xy = x`
Choose the correct alternative.
The solution of `x dy/dx = y` log y is
A solution of a differential equation which can be obtained from the general solution by giving particular values to the arbitrary constants is called ___________ solution.
Solve:
(x + y) dy = a2 dx
Solve the differential equation `("d"y)/("d"x) + y` = e−x
Choose the correct alternative:
Differential equation of the function c + 4yx = 0 is
Solve the following differential equation `("d"y)/("d"x)` = cos(x + y)
Solution: `("d"y)/("d"x)` = cos(x + y) ......(1)
Put `square`
∴ `1 + ("d"y)/("d"x) = "dv"/("d"x)`
∴ `("d"y)/("d"x) = "dv"/("d"x) - 1`
∴ (1) becomes `"dv"/("d"x) - 1` = cos v
∴ `"dv"/("d"x)` = 1 + cos v
∴ `square` dv = dx
Integrating, we get
`int 1/(1 + cos "v") "d"v = int "d"x`
∴ `int 1/(2cos^2 ("v"/2)) "dv" = int "d"x`
∴ `1/2 int square "dv" = int "d"x`
∴ `1/2* (tan("v"/2))/(1/2)` = x + c
∴ `square` = x + c