Advertisements
Advertisements
प्रश्न
Solve the following differential equation.
`dy/dx + 2xy = x`
उत्तर
`dy/dx + 2xy = x`
The given equation is of the form
`dy/dx + py = Q`
where, P = 2x and Q = x
∴ `I.F. = e^(intPdx) = e^ (int ^(2x dx) = e^(x^2)`
∴ Solution of the given equation is
y(I.F.) = `int Q ( I.F.) dx +c`
∴ `y e ^(x^2) int xe^(x^2) dx + c `
In R. H. S., put x2 = t
Differentiating w.r.t. x, we get
2x dx = dt
∴ `ye^(x^2) = int e^t dt/2 + c `
= `1/2 int e^t dt+ c `
= `e^t/2 + c`
∴ `y e ^(x^2) = 1/2 e^(x^2) + c`
APPEARS IN
संबंधित प्रश्न
Assume that a rain drop evaporates at a rate proportional to its surface area. Form a differential equation involving the rate of change of the radius of the rain drop.
For the following differential equation verify that the accompanying function is a solution:
Differential equation | Function |
\[x\frac{dy}{dx} = y\]
|
y = ax |
Differential equation \[\frac{d^2 y}{d x^2} - 2\frac{dy}{dx} + y = 0, y \left( 0 \right) = 1, y' \left( 0 \right) = 2\] Function y = xex + ex
tan y \[\frac{dy}{dx}\] = sin (x + y) + sin (x − y)
Solve the following differential equation:
(xy2 + 2x) dx + (x2 y + 2y) dy = 0
In a bank principal increases at the rate of 5% per year. An amount of Rs 1000 is deposited with this bank, how much will it worth after 10 years (e0.5 = 1.648).
The surface area of a balloon being inflated, changes at a rate proportional to time t. If initially its radius is 1 unit and after 3 seconds it is 2 units, find the radius after time t.
The slope of the tangent at a point P (x, y) on a curve is \[\frac{- x}{y}\]. If the curve passes through the point (3, −4), find the equation of the curve.
Find the equation of the curve which passes through the origin and has the slope x + 3y− 1 at any point (x, y) on it.
A curve is such that the length of the perpendicular from the origin on the tangent at any point P of the curve is equal to the abscissa of P. Prove that the differential equation of the curve is \[y^2 - 2xy\frac{dy}{dx} - x^2 = 0\], and hence find the curve.
Form the differential equation of the family of parabolas having vertex at origin and axis along positive y-axis.
The solution of `dy/dx + x^2/y^2 = 0` is ______
Given that `"dy"/"dx" = "e"^-2x` and y = 0 when x = 5. Find the value of x when y = 3.