मराठी
महाराष्ट्र राज्य शिक्षण मंडळएचएससी वाणिज्य (इंग्रजी माध्यम) इयत्ता १२ वी

Solve the following differential equation. dydx+2xy=x - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

Solve the following differential equation.

`dy/dx + 2xy = x`

बेरीज

उत्तर

`dy/dx + 2xy = x`

The given equation is of the form

`dy/dx + py = Q`

where, P = 2x and Q = x

∴ `I.F. = e^(intPdx) = e^ (int ^(2x  dx) = e^(x^2)`

∴ Solution of the given equation is

y(I.F.) = `int Q ( I.F.) dx +c`

∴ `y e ^(x^2)  int xe^(x^2) dx + c `

In R. H. S., put x2 = t

Differentiating w.r.t. x, we get

2x dx = dt 

∴ `ye^(x^2) = int e^t dt/2 + c `

= `1/2 int e^t dt+ c `

= `e^t/2 + c`

∴ `y e ^(x^2) = 1/2 e^(x^2) + c`

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 8: Differential Equation and Applications - Exercise 8.5 [पृष्ठ १६८]

APPEARS IN

बालभारती Mathematics and Statistics 1 (Commerce) [English] 12 Standard HSC Maharashtra State Board
पाठ 8 Differential Equation and Applications
Exercise 8.5 | Q 1.6 | पृष्ठ १६८

संबंधित प्रश्‍न

\[\left( \frac{dy}{dx} \right)^2 + \frac{1}{dy/dx} = 2\]

\[x + \left( \frac{dy}{dx} \right) = \sqrt{1 + \left( \frac{dy}{dx} \right)^2}\]

Assume that a rain drop evaporates at a rate proportional to its surface area. Form a differential equation involving the rate of change of the radius of the rain drop.

 

For the following differential equation verify that the accompanying function is a solution:

Differential equation Function
\[x\frac{dy}{dx} = y\]
y = ax

Differential equation \[\frac{d^2 y}{d x^2} - 2\frac{dy}{dx} + y = 0, y \left( 0 \right) = 1, y' \left( 0 \right) = 2\] Function y = xex + ex


\[\frac{dy}{dx} = x^5 + x^2 - \frac{2}{x}, x \neq 0\]

\[\left( x + 2 \right)\frac{dy}{dx} = x^2 + 3x + 7\]

\[\frac{dy}{dx} = \frac{1 - \cos 2y}{1 + \cos 2y}\]

tan y \[\frac{dy}{dx}\] = sin (x + y) + sin (x − y) 

 


Solve the following differential equation: 
(xy2 + 2x) dx + (x2 y + 2y) dy = 0


\[xy\frac{dy}{dx} = \left( x + 2 \right)\left( y + 2 \right), y\left( 1 \right) = - 1\]

In a bank principal increases at the rate of 5% per year. An amount of Rs 1000 is deposited with this bank, how much will it worth after 10 years (e0.5 = 1.648).


\[\frac{dy}{dx} = \frac{y}{x} - \sqrt{\frac{y^2}{x^2} - 1}\]

The surface area of a balloon being inflated, changes at a rate proportional to time t. If initially its radius is 1 unit and after 3 seconds it is 2 units, find the radius after time t.


The slope of the tangent at a point P (x, y) on a curve is \[\frac{- x}{y}\]. If the curve passes through the point (3, −4), find the equation of the curve.


Find the equation of the curve which passes through the origin and has the slope x + 3y− 1 at any point (x, y) on it.


A curve is such that the length of the perpendicular from the origin on the tangent at any point P of the curve is equal to the abscissa of P. Prove that the differential equation of the curve is \[y^2 - 2xy\frac{dy}{dx} - x^2 = 0\], and hence find the curve.


Form the differential equation of the family of parabolas having vertex at origin and axis along positive y-axis.


The solution of `dy/dx + x^2/y^2 = 0` is ______


Given that `"dy"/"dx" = "e"^-2x` and y = 0 when x = 5. Find the value of x when y = 3.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×