Advertisements
Advertisements
प्रश्न
tan y \[\frac{dy}{dx}\] = sin (x + y) + sin (x − y)
उत्तर
We have,
\[\tan y \frac{dy}{dx} = \sin \left( x + y \right) + \sin \left( x - y \right)\]
\[ \Rightarrow \tan y \frac{dy}{dx} = \sin x \cos y + \cos x \sin y + \sin x \cos y - \cos x \sin y\]
\[ \Rightarrow \tan y \frac{dy}{dx} = 2 \sin x\cos y\]
\[ \Rightarrow \frac{\tan y}{\cos y}dy = 2 \sin x dx\]
\[ \Rightarrow \tan y \sec y dy = 2 \sin x dx\]
Integrating both sides, we get
\[\int\tan y \sec y dy = 2\int\sin x dx\]
\[ \Rightarrow \sec y = - 2 \cos x + C\]
\[ \Rightarrow \sec y + 2 \cos x = C\]
\[\text{ Hence,} \sec y + 2 \cos x = \text{ C is the required solution .}\]
APPEARS IN
संबंधित प्रश्न
Show that the function y = A cos x + B sin x is a solution of the differential equation \[\frac{d^2 y}{d x^2} + y = 0\]
Verify that y = \[\frac{a}{x} + b\] is a solution of the differential equation
\[\frac{d^2 y}{d x^2} + \frac{2}{x}\left( \frac{dy}{dx} \right) = 0\]
For the following differential equation verify that the accompanying function is a solution:
Differential equation | Function |
\[x^3 \frac{d^2 y}{d x^2} = 1\]
|
\[y = ax + b + \frac{1}{2x}\]
|
(sin x + cos x) dy + (cos x − sin x) dx = 0
C' (x) = 2 + 0.15 x ; C(0) = 100
x cos y dy = (xex log x + ex) dx
In a bank principal increases at the rate of r% per year. Find the value of r if ₹100 double itself in 10 years (loge 2 = 0.6931).
In a culture the bacteria count is 100000. The number is increased by 10% in 2 hours. In how many hours will the count reach 200000, if the rate of growth of bacteria is proportional to the number present.
If y(x) is a solution of the different equation \[\left( \frac{2 + \sin x}{1 + y} \right)\frac{dy}{dx} = - \cos x\] and y(0) = 1, then find the value of y(π/2).
2xy dx + (x2 + 2y2) dy = 0
\[\frac{dy}{dx} = \frac{y}{x} + \sin\left( \frac{y}{x} \right)\]
Solve the following initial value problem:-
\[y' + y = e^x , y\left( 0 \right) = \frac{1}{2}\]
Solve the following initial value problem:
\[\frac{dy}{dx} + y \cot x = 4x\text{ cosec }x, y\left( \frac{\pi}{2} \right) = 0\]
Find the equation of the curve which passes through the origin and has the slope x + 3y− 1 at any point (x, y) on it.
The slope of a curve at each of its points is equal to the square of the abscissa of the point. Find the particular curve through the point (−1, 1).
Integrating factor of the differential equation cos \[x\frac{dy}{dx} + y\] sin x = 1, is
The differential equation of the ellipse \[\frac{x^2}{a^2} + \frac{y^2}{b^2} = C\] is
The differential equation \[x\frac{dy}{dx} - y = x^2\], has the general solution
Solve the following differential equation.
`(dθ)/dt = − k (θ − θ_0)`
Solve the following differential equation.
`dy/dx + y = e ^-x`
Solve the following differential equation.
dr + (2r)dθ= 8dθ
The solution of `dy/ dx` = 1 is ______
Choose the correct alternative.
The integrating factor of `dy/dx - y = e^x `is ex, then its solution is
Solve the differential equation:
`e^(dy/dx) = x`
Select and write the correct alternative from the given option for the question
Differential equation of the function c + 4yx = 0 is
Solve the following differential equation y2dx + (xy + x2) dy = 0
A solution of differential equation which can be obtained from the general solution by giving particular values to the arbitrary constant is called ______ solution
Verify y = log x + c is the solution of differential equation `x ("d"^2y)/("d"x^2) + ("d"y)/("d"x)` = 0
The integrating factor of the differential equation `"dy"/"dx" (x log x) + y` = 2logx is ______.
Integrating factor of the differential equation `"dy"/"dx" - y` = cos x is ex.
The differential equation of all non horizontal lines in a plane is `("d"^2x)/("d"y^2)` = 0
`d/(dx)(tan^-1 (sqrt(1 + x^2) - 1)/x)` is equal to: