मराठी

Tan Y D Y D X = Sin (X + Y) + Sin (X − Y) - Mathematics

Advertisements
Advertisements

प्रश्न

tan y \[\frac{dy}{dx}\] = sin (x + y) + sin (x − y) 

 

उत्तर

We have,
\[\tan y \frac{dy}{dx} = \sin \left( x + y \right) + \sin \left( x - y \right)\]
\[ \Rightarrow \tan y \frac{dy}{dx} = \sin x \cos y + \cos x \sin y + \sin x \cos y - \cos x \sin y\]
\[ \Rightarrow \tan y \frac{dy}{dx} = 2 \sin x\cos y\]
\[ \Rightarrow \frac{\tan y}{\cos y}dy = 2 \sin x dx\]
\[ \Rightarrow \tan y \sec y dy = 2 \sin x dx\]
Integrating both sides, we get
\[\int\tan y \sec y dy = 2\int\sin x dx\]
\[ \Rightarrow \sec y = - 2 \cos x + C\]
\[ \Rightarrow \sec y + 2 \cos x = C\]
\[\text{ Hence,} \sec y + 2 \cos x = \text{ C is the required solution .}\] 

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 22: Differential Equations - Exercise 22.07 [पृष्ठ ५५]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 22 Differential Equations
Exercise 22.07 | Q 24 | पृष्ठ ५५

व्हिडिओ ट्यूटोरियलVIEW ALL [2]

संबंधित प्रश्‍न

\[\left( \frac{dy}{dx} \right)^2 + \frac{1}{dy/dx} = 2\]

Show that the function y = A cos x + B sin x is a solution of the differential equation \[\frac{d^2 y}{d x^2} + y = 0\]


Verify that y = \[\frac{a}{x} + b\] is a solution of the differential equation
\[\frac{d^2 y}{d x^2} + \frac{2}{x}\left( \frac{dy}{dx} \right) = 0\]


For the following differential equation verify that the accompanying function is a solution:

Differential equation Function
\[x^3 \frac{d^2 y}{d x^2} = 1\]
\[y = ax + b + \frac{1}{2x}\]

\[\frac{dy}{dx} = x^5 + x^2 - \frac{2}{x}, x \neq 0\]

\[\frac{dy}{dx} = \frac{1 - \cos x}{1 + \cos x}\]

(sin x + cos x) dy + (cos x − sin x) dx = 0


\[\frac{dy}{dx} = x \log x\]

C' (x) = 2 + 0.15 x ; C(0) = 100


x cos y dy = (xex log x + ex) dx


\[\frac{dy}{dx} = \frac{e^x \left( \sin^2 x + \sin 2x \right)}{y\left( 2 \log y + 1 \right)}\]

\[\frac{dy}{dx} = \frac{x\left( 2 \log x + 1 \right)}{\sin y + y \cos y}\]

\[\cos x \cos y\frac{dy}{dx} = - \sin x \sin y\]

In a bank principal increases at the rate of r% per year. Find the value of r if ₹100 double itself in 10 years (loge 2 = 0.6931).


In a culture the bacteria count is 100000. The number is increased by 10% in 2 hours. In how many hours will the count reach 200000, if the rate of growth of bacteria is proportional to the number present.


If y(x) is a solution of the different equation \[\left( \frac{2 + \sin x}{1 + y} \right)\frac{dy}{dx} = - \cos x\] and y(0) = 1, then find the value of y(π/2).


2xy dx + (x2 + 2y2) dy = 0


\[\frac{dy}{dx} = \frac{y}{x} + \sin\left( \frac{y}{x} \right)\]

 

Solve the following initial value problem:-

\[y' + y = e^x , y\left( 0 \right) = \frac{1}{2}\]


Solve the following initial value problem:
\[\frac{dy}{dx} + y \cot x = 4x\text{ cosec }x, y\left( \frac{\pi}{2} \right) = 0\]


Find the equation of the curve which passes through the origin and has the slope x + 3y− 1 at any point (x, y) on it.


The slope of a curve at each of its points is equal to the square of the abscissa of the point. Find the particular curve through the point (−1, 1).


Integrating factor of the differential equation cos \[x\frac{dy}{dx} + y\] sin x = 1, is


The differential equation of the ellipse \[\frac{x^2}{a^2} + \frac{y^2}{b^2} = C\] is


The differential equation \[x\frac{dy}{dx} - y = x^2\], has the general solution


Solve the following differential equation.

`(dθ)/dt  = − k (θ − θ_0)`


Solve the following differential equation.

`dy/dx + y = e ^-x`


Solve the following differential equation.

dr + (2r)dθ= 8dθ


The solution of `dy/ dx` = 1 is ______


Choose the correct alternative.

The integrating factor of `dy/dx -  y = e^x `is ex, then its solution is


Solve the differential equation:

`e^(dy/dx) = x`


Select and write the correct alternative from the given option for the question 

Differential equation of the function c + 4yx = 0 is


Solve the following differential equation y2dx + (xy + x2) dy = 0


A solution of differential equation which can be obtained from the general solution by giving particular values to the arbitrary constant is called ______ solution


Verify y = log x + c is the solution of differential equation `x ("d"^2y)/("d"x^2) + ("d"y)/("d"x)` = 0


The integrating factor of the differential equation `"dy"/"dx" (x log x) + y` = 2logx is ______.


Integrating factor of the differential equation `"dy"/"dx" - y` = cos x is ex.


The differential equation of all non horizontal lines in a plane is `("d"^2x)/("d"y^2)` = 0


`d/(dx)(tan^-1  (sqrt(1 + x^2) - 1)/x)` is equal to:


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×