मराठी

D Y D X = E X ( Sin 2 X + Sin 2 X ) Y ( 2 Log Y + 1 ) - Mathematics

Advertisements
Advertisements

प्रश्न

\[\frac{dy}{dx} = \frac{e^x \left( \sin^2 x + \sin 2x \right)}{y\left( 2 \log y + 1 \right)}\]
बेरीज

उत्तर

\[\frac{dy}{dx} = \frac{e^x \left( \sin^2 x + \sin 2x \right)}{y\left( 2\log y + 1 \right)}\]
\[ \Rightarrow y\left( 2\log y + 1 \right)dy = e^x \left( \sin^2 x + \sin 2x \right)dx\]
\[ \Rightarrow \left( 2y \log y + y \right)dy = \left( e^x \sin^2 x + e^x \sin 2x \right)dx\]
\[ \Rightarrow 2y \log y\ dy + y\ dy = e^x \sin^2 x dx + e^x \sin 2x dx\]
Integrating both sides, we get

\[ \Rightarrow 2\left[ \log y\int y\ dy - \int\left\{ \frac{d}{dy}\left( \log y \right)\int y dy \right\} \right]dy + \int y dy = \sin^2 x\int e^x\ dx - \int\left[ \frac{d}{dx}\left( \sin^2 x \right)\int e^x dx \right]dx + \int e^x \sin 2x\ dx\]
\[ \Rightarrow 2\left[ \log y \left( \frac{y^2}{2} \right) - \int\left( \frac{1}{y} \right)\frac{y^2}{2}dy \right] + \int y\ dy = \sin^2 x e^x - \int\left[ 2\sin x\cos x e^x \right]dx + \int e^x \sin 2x\ dx + C\]
\[ \Rightarrow y^2 \log y - \int y\ dy + \int y\ dy = e^x \sin^2 x - \int e^x \sin 2x\ dx + \int e^x \sin 2x\ dx + C\]
\[ \Rightarrow y^2 \log y = e^x \sin^2 x + C\]

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 22: Differential Equations - Exercise 22.07 [पृष्ठ ५५]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 22 Differential Equations
Exercise 22.07 | Q 19 | पृष्ठ ५५

व्हिडिओ ट्यूटोरियलVIEW ALL [2]

संबंधित प्रश्‍न

\[\frac{d^2 y}{d x^2} + 4y = 0\]

\[\sqrt[3]{\frac{d^2 y}{d x^2}} = \sqrt{\frac{dy}{dx}}\]

Show that y = ax3 + bx2 + c is a solution of the differential equation \[\frac{d^3 y}{d x^3} = 6a\].

 


Verify that y2 = 4a (x + a) is a solution of the differential equations
\[y\left\{ 1 - \left( \frac{dy}{dx} \right)^2 \right\} = 2x\frac{dy}{dx}\]


Differential equation \[x\frac{dy}{dx} = 1, y\left( 1 \right) = 0\]

Function y = log x


\[\frac{dy}{dx} = \frac{1 - \cos x}{1 + \cos x}\]

\[\frac{dy}{dx} = \tan^{- 1} x\]


\[\frac{1}{x}\frac{dy}{dx} = \tan^{- 1} x, x \neq 0\]

\[\left( x^3 + x^2 + x + 1 \right)\frac{dy}{dx} = 2 x^2 + x\]

\[\left( x - 1 \right)\frac{dy}{dx} = 2 x^3 y\]

\[y\sqrt{1 + x^2} + x\sqrt{1 + y^2}\frac{dy}{dx} = 0\]

\[\frac{dy}{dx} + \frac{\cos x \sin y}{\cos y} = 0\]

\[\frac{dy}{dx} = 2xy, y\left( 0 \right) = 1\]

\[\frac{dy}{dx} = 1 + x + y^2 + x y^2\] when y = 0, x = 0

x2 dy + y (x + y) dx = 0


\[xy\frac{dy}{dx} = x^2 - y^2\]

\[x^2 \frac{dy}{dx} = x^2 + xy + y^2 \]


3x2 dy = (3xy + y2) dx


\[\frac{dy}{dx} = \frac{y}{x} - \sqrt{\frac{y^2}{x^2} - 1}\]

\[x\frac{dy}{dx} = y - x \cos^2 \left( \frac{y}{x} \right)\]

Solve the following initial value problem:-
\[x\frac{dy}{dx} - y = \log x, y\left( 1 \right) = 0\]


Solve the following initial value problem:-

\[x\frac{dy}{dx} - y = \left( x + 1 \right) e^{- x} , y\left( 1 \right) = 0\]


Solve the following initial value problem:
\[x\frac{dy}{dx} + y = x \cos x + \sin x, y\left( \frac{\pi}{2} \right) = 1\]


Find the equation to the curve satisfying x (x + 1) \[\frac{dy}{dx} - y\]  = x (x + 1) and passing through (1, 0).


Show that all curves for which the slope at any point (x, y) on it is \[\frac{x^2 + y^2}{2xy}\]  are rectangular hyperbola.


If xmyn = (x + y)m+n, prove that \[\frac{dy}{dx} = \frac{y}{x} .\]


Form the differential equation representing the family of curves y = a sin (x + b), where ab are arbitrary constant.


Form the differential equation of the family of parabolas having vertex at origin and axis along positive y-axis.


The price of six different commodities for years 2009 and year 2011 are as follows: 

Commodities A B C D E F

Price in 2009 (₹)

35 80 25 30 80 x
Price in 2011 (₹) 50 y 45 70 120 105

The Index number for the year 2011 taking 2009 as the base year for the above data was calculated to be 125. Find the values of x andy if the total price in 2009 is ₹ 360.


Solve the following differential equation.

`xy  dy/dx = x^2 + 2y^2`


State whether the following is True or False:

The integrating factor of the differential equation `dy/dx - y = x` is e-x


Select and write the correct alternative from the given option for the question

Bacterial increases at the rate proportional to the number present. If original number M doubles in 3 hours, then number of bacteria will be 4M in


Solve the following differential equation

`yx ("d"y)/("d"x)` = x2 + 2y2 


For the differential equation, find the particular solution

`("d"y)/("d"x)` = (4x +y + 1), when y = 1, x = 0


Choose the correct alternative:

Solution of the equation `x("d"y)/("d"x)` = y log y is


The function y = ex is solution  ______ of differential equation


Solve the following differential equation `("d"y)/("d"x)` = cos(x + y)

Solution: `("d"y)/("d"x)` = cos(x + y)    ......(1)

Put `square`

∴ `1 + ("d"y)/("d"x) = "dv"/("d"x)`

∴ `("d"y)/("d"x) = "dv"/("d"x) - 1`

∴ (1) becomes `"dv"/("d"x) - 1` = cos v

∴ `"dv"/("d"x)` = 1 + cos v

∴ `square` dv = dx

Integrating, we get

`int 1/(1 + cos "v")  "d"v = int  "d"x`

∴ `int 1/(2cos^2 ("v"/2))  "dv" = int  "d"x`

∴ `1/2 int square  "dv" = int  "d"x`

∴ `1/2* (tan("v"/2))/(1/2)` = x + c

∴ `square` = x + c


Given that `"dy"/"dx"` = yex and x = 0, y = e. Find the value of y when x = 1.


The integrating factor of the differential equation `"dy"/"dx" (x log x) + y` = 2logx is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×