Advertisements
Advertisements
प्रश्न
उत्तर
We have,
\[\frac{dy}{dx} = \frac{x\left( 2 \log x + 1 \right)}{\sin y + y \cos y}\]
\[\Rightarrow \left( \sin y + y \cos y \right) dy = x\left( 2 \log x + 1 \right) dx\]
Integrating both sides, we get
\[\int\left( \sin y + y \cos y \right) dy = \int x\left( 2 \log x + 1 \right) dx\]
\[ \Rightarrow \int\sin y dy + \int y \cos y dy = 2\int x \log x dx + \int x dx\]
\[ \Rightarrow - \cos y + \left[ y\int\cos y dy - \int\left\{ \frac{d}{dy}\left( y \right)\int \cos y dy \right\}dy \right] = 2\left[ \log x\int x dx - \int\left\{ \frac{d}{dx}\left( \log x \right)\int x dx \right\}dx \right] + \frac{x^2}{2}\]
\[ \Rightarrow - \cos y + \left[ y \sin y - \int\sin y dy \right] = 2\left[ \log x \times \frac{x^2}{2} - \int\frac{1}{x} \times \frac{x^2}{2} \right] + \frac{x^2}{2}\]
\[ \Rightarrow - \cos y + y \sin y + \cos y = x^2 \log x - \frac{x^2}{2} + \frac{x^2}{2} + C\]
\[ \Rightarrow y \sin y = x^2 \log x + C\]
\[\text{ Hence, } y \sin y = x^2 \log x +\text{ C is the required solution }.\]
APPEARS IN
संबंधित प्रश्न
Show that the function y = A cos x + B sin x is a solution of the differential equation \[\frac{d^2 y}{d x^2} + y = 0\]
Verify that y2 = 4ax is a solution of the differential equation y = x \[\frac{dy}{dx} + a\frac{dx}{dy}\]
For the following differential equation verify that the accompanying function is a solution:
Differential equation | Function |
\[x + y\frac{dy}{dx} = 0\]
|
\[y = \pm \sqrt{a^2 - x^2}\]
|
(sin x + cos x) dy + (cos x − sin x) dx = 0
dy + (x + 1) (y + 1) dx = 0
(x2 − y2) dx − 2xy dy = 0
Find the particular solution of the differential equation \[\frac{dy}{dx} = \frac{xy}{x^2 + y^2}\] given that y = 1 when x = 0.
Solve the following initial value problem:-
\[\frac{dy}{dx} + 2y \tan x = \sin x; y = 0\text{ when }x = \frac{\pi}{3}\]
Find the curve for which the intercept cut-off by a tangent on x-axis is equal to four times the ordinate of the point of contact.
A curve is such that the length of the perpendicular from the origin on the tangent at any point P of the curve is equal to the abscissa of P. Prove that the differential equation of the curve is \[y^2 - 2xy\frac{dy}{dx} - x^2 = 0\], and hence find the curve.
Integrating factor of the differential equation cos \[x\frac{dy}{dx} + y\] sin x = 1, is
In the following verify that the given functions (explicit or implicit) is a solution of the corresponding differential equation:-
`y=sqrt(a^2-x^2)` `x+y(dy/dx)=0`
In each of the following examples, verify that the given function is a solution of the corresponding differential equation.
Solution | D.E. |
y = ex | `dy/ dx= y` |
For the following differential equation find the particular solution.
`(x + 1) dy/dx − 1 = 2e^(−y)`,
when y = 0, x = 1
Solve the following differential equation.
(x2 − y2 ) dx + 2xy dy = 0
Solve the following differential equation.
y dx + (x - y2 ) dy = 0
Choose the correct alternative.
The differential equation of y = `k_1 + k_2/x` is
The solution of `dy/dx + x^2/y^2 = 0` is ______
Solve the differential equation:
dr = a r dθ − θ dr
y dx – x dy + log x dx = 0
Verify y = `a + b/x` is solution of `x(d^2y)/(dx^2) + 2 (dy)/(dx)` = 0
y = `a + b/x`
`(dy)/(dx) = square`
`(d^2y)/(dx^2) = square`
Consider `x(d^2y)/(dx^2) + 2(dy)/(dx)`
= `x square + 2 square`
= `square`
Hence y = `a + b/x` is solution of `square`
Find the particular solution of the following differential equation
`("d"y)/("d"x)` = e2y cos x, when x = `pi/6`, y = 0.
Solution: The given D.E. is `("d"y)/("d"x)` = e2y cos x
∴ `1/"e"^(2y) "d"y` = cos x dx
Integrating, we get
`int square "d"y` = cos x dx
∴ `("e"^(-2y))/(-2)` = sin x + c1
∴ e–2y = – 2sin x – 2c1
∴ `square` = c, where c = – 2c1
This is general solution.
When x = `pi/6`, y = 0, we have
`"e"^0 + 2sin pi/6` = c
∴ c = `square`
∴ particular solution is `square`
Solve the differential equation `"dy"/"dx"` = 1 + x + y2 + xy2, when y = 0, x = 0.
Solution of `x("d"y)/("d"x) = y + x tan y/x` is `sin(y/x)` = cx
lf the straight lines `ax + by + p` = 0 and `x cos alpha + y sin alpha = p` are inclined at an angle π/4 and concurrent with the straight line `x sin alpha - y cos alpha` = 0, then the value of `a^2 + b^2` is
There are n students in a school. If r % among the students are 12 years or younger, which of the following expressions represents the number of students who are older than 12?
Solve the differential equation `dy/dx + xy = xy^2` and find the particular solution when y = 4, x = 1.