मराठी

For the Following Differential Equation Verify that the Accompanying Function is a Solution: Differential Equation Function X + Y D Y D X = 0 Y = ± √ a 2 − X 2 - Mathematics

Advertisements
Advertisements

प्रश्न

For the following differential equation verify that the accompanying function is a solution:

Differential equation Function
\[x + y\frac{dy}{dx} = 0\]
\[y = \pm \sqrt{a^2 - x^2}\]

उत्तर

We have,
\[y = \pm \sqrt{a^2 - x^2}\]
\[ \Rightarrow y^2 = a^2 - x^2 . . . . . \left( 1 \right)\]
Given differential equation:
\[x + y\frac{dy}{dx} = 0\]
Differentiating both sides of (1) with respect to x, we get
\[2y \frac{dy}{dx} = - 2x\]
\[ \Rightarrow y \frac{dy}{dx} = - x\]
\[ \Rightarrow x + y \frac{dy}{dx} = 0\]
Hence, the given function is the solution to the given differential equation.

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 22: Differential Equations - Exercise 22.03 [पृष्ठ २५]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 22 Differential Equations
Exercise 22.03 | Q 21.2 | पृष्ठ २५

व्हिडिओ ट्यूटोरियलVIEW ALL [2]

संबंधित प्रश्‍न

Assume that a rain drop evaporates at a rate proportional to its surface area. Form a differential equation involving the rate of change of the radius of the rain drop.

 

Show that y = e−x + ax + b is solution of the differential equation\[e^x \frac{d^2 y}{d x^2} = 1\]

 


\[\frac{dy}{dx} = x^5 \tan^{- 1} \left( x^3 \right)\]

\[\frac{dy}{dx} = x \log x\]

(1 + x2) dy = xy dx


x cos y dy = (xex log x + ex) dx


\[\frac{dy}{dx} = y \tan x, y\left( 0 \right) = 1\]

In a culture the bacteria count is 100000. The number is increased by 10% in 2 hours. In how many hours will the count reach 200000, if the rate of growth of bacteria is proportional to the number present.


If y(x) is a solution of the different equation \[\left( \frac{2 + \sin x}{1 + y} \right)\frac{dy}{dx} = - \cos x\] and y(0) = 1, then find the value of y(π/2).


\[\frac{dy}{dx}\cos\left( x - y \right) = 1\]

\[\cos^2 \left( x - 2y \right) = 1 - 2\frac{dy}{dx}\]

(x + y) (dx − dy) = dx + dy


\[\frac{dy}{dx} = \frac{y^2 - x^2}{2xy}\]

\[x\frac{dy}{dx} = x + y\]

\[\frac{dy}{dx} = \frac{x}{2y + x}\]

Solve the following initial value problem:-
\[x\frac{dy}{dx} - y = \log x, y\left( 1 \right) = 0\]


Show that the equation of the curve whose slope at any point is equal to y + 2x and which passes through the origin is y + 2 (x + 1) = 2e2x.


Find the equation to the curve satisfying x (x + 1) \[\frac{dy}{dx} - y\]  = x (x + 1) and passing through (1, 0).


Find the equation of the curve that passes through the point (0, a) and is such that at any point (x, y) on it, the product of its slope and the ordinate is equal to the abscissa.


The x-intercept of the tangent line to a curve is equal to the ordinate of the point of contact. Find the particular curve through the point (1, 1).


Integrating factor of the differential equation cos \[x\frac{dy}{dx} + y \sin x = 1\], is


If a + ib = `("x" + "iy")/("x" - "iy"),` prove that `"a"^2 +"b"^2 = 1` and `"b"/"a" = (2"xy")/("x"^2 - "y"^2)`


Choose the correct option from the given alternatives:

The solution of `1/"x" * "dy"/"dx" = tan^-1 "x"` is


Determine the order and degree of the following differential equations.

Solution D.E.
y = 1 − logx `x^2(d^2y)/dx^2 = 1`

Determine the order and degree of the following differential equations.

Solution D.E
y = aex + be−x `(d^2y)/dx^2= 1`

For each of the following differential equations find the particular solution.

(x − y2 x) dx − (y + x2 y) dy = 0, when x = 2, y = 0


Solve the following differential equation.

`x^2 dy/dx = x^2 +xy - y^2`


Solve the following differential equation.

`(x + a) dy/dx = – y + a`


Choose the correct alternative.

Bacteria increases at the rate proportional to the number present. If the original number M doubles in 3 hours, then the number of bacteria will be 4M in


State whether the following is True or False:

The degree of a differential equation is the power of the highest ordered derivative when all the derivatives are made free from negative and/or fractional indices if any.


Solve the differential equation sec2y tan x dy + sec2x tan y dx = 0


For the differential equation, find the particular solution (x – y2x) dx – (y + x2y) dy = 0 when x = 2, y = 0


Choose the correct alternative:

Differential equation of the function c + 4yx = 0 is


A solution of differential equation which can be obtained from the general solution by giving particular values to the arbitrary constant is called ______ solution


The function y = cx is the solution of differential equation `("d"y)/("d"x) = y/x`


Integrating factor of the differential equation `x "dy"/"dx" - y` = sinx is ______.


There are n students in a school. If r % among the students are 12 years or younger, which of the following expressions represents the number of students who are older than 12?


Solve the differential equation `dy/dx + xy = xy^2` and find the particular solution when y = 4, x = 1.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×