Advertisements
Advertisements
प्रश्न
For the following differential equation verify that the accompanying function is a solution:
Differential equation | Function |
\[x\frac{dy}{dx} = y\]
|
y = ax |
उत्तर
We have,
\[y = ax ..............(1)\]
Given differential equation
\[x\frac{dy}{dx} = y\]
Differentiating both sides of (1) with respect to x, we get
\[\frac{dy}{dx} = a\]
\[ \Rightarrow \frac{dy}{dx} = \frac{y}{x} .........\left[\text{Using (1)}\right]\]
\[ \Rightarrow x\frac{dy}{dx} = y\]
Hence, the given function is the solution to the given differential equation.
APPEARS IN
संबंधित प्रश्न
Show that the differential equation of which y = 2(x2 − 1) + \[c e^{- x^2}\] is a solution, is \[\frac{dy}{dx} + 2xy = 4 x^3\]
Verify that y = cx + 2c2 is a solution of the differential equation
Verify that y = − x − 1 is a solution of the differential equation (y − x) dy − (y2 − x2) dx = 0.
Verify that y2 = 4a (x + a) is a solution of the differential equations
\[y\left\{ 1 - \left( \frac{dy}{dx} \right)^2 \right\} = 2x\frac{dy}{dx}\]
Show that y = e−x + ax + b is solution of the differential equation\[e^x \frac{d^2 y}{d x^2} = 1\]
tan y dx + sec2 y tan x dy = 0
Find the particular solution of the differential equation
(1 – y2) (1 + log x) dx + 2xy dy = 0, given that y = 0 when x = 1.
The rate of growth of a population is proportional to the number present. If the population of a city doubled in the past 25 years, and the present population is 100000, when will the city have a population of 500000?
If the interest is compounded continuously at 6% per annum, how much worth Rs 1000 will be after 10 years? How long will it take to double Rs 1000?
The rate of increase in the number of bacteria in a certain bacteria culture is proportional to the number present. Given the number triples in 5 hrs, find how many bacteria will be present after 10 hours. Also find the time necessary for the number of bacteria to be 10 times the number of initial present.
Find the equation to the curve satisfying x (x + 1) \[\frac{dy}{dx} - y\] = x (x + 1) and passing through (1, 0).
Find the equation of the curve which passes through the point (3, −4) and has the slope \[\frac{2y}{x}\] at any point (x, y) on it.
Radium decomposes at a rate proportional to the quantity of radium present. It is found that in 25 years, approximately 1.1% of a certain quantity of radium has decomposed. Determine approximately how long it will take for one-half of the original amount of radium to decompose?
Find the equation of the curve that passes through the point (0, a) and is such that at any point (x, y) on it, the product of its slope and the ordinate is equal to the abscissa.
Write the differential equation representing the family of straight lines y = Cx + 5, where C is an arbitrary constant.
The equation of the curve whose slope is given by \[\frac{dy}{dx} = \frac{2y}{x}; x > 0, y > 0\] and which passes through the point (1, 1) is
The solution of the differential equation y1 y3 = y22 is
What is integrating factor of \[\frac{dy}{dx}\] + y sec x = tan x?
Form the differential equation representing the family of curves y = a sin (x + b), where a, b are arbitrary constant.
In the following example, verify that the given function is a solution of the corresponding differential equation.
Solution | D.E. |
xy = log y + k | y' (1 - xy) = y2 |
For each of the following differential equations find the particular solution.
(x − y2 x) dx − (y + x2 y) dy = 0, when x = 2, y = 0
The differential equation of `y = k_1e^x+ k_2 e^-x` is ______.
State whether the following is True or False:
The integrating factor of the differential equation `dy/dx - y = x` is e-x
Solve the differential equation:
`e^(dy/dx) = x`
Solve the differential equation sec2y tan x dy + sec2x tan y dx = 0
Solve the differential equation xdx + 2ydy = 0
Choose the correct alternative:
Differential equation of the function c + 4yx = 0 is
A man is moving away from a tower 41.6 m high at a rate of 2 m/s. If the eye level of the man is 1.6 m above the ground, then the rate at which the angle of elevation of the top of the tower changes, when he is at a distance of 30 m from the foot of the tower, is