Advertisements
Advertisements
प्रश्न
Form the differential equation representing the family of curves y = a sin (x + b), where a, b are arbitrary constant.
उत्तर
We have,
y = a sin (x + b) .....(1)
Differentiating both sides, we get
\[\frac{dy}{dx} = a \cos\left( x + b \right)\]
\[ \Rightarrow \frac{d^2 y}{d x^2} = - a \sin\left( x + b \right) \]
\[ \Rightarrow \frac{d^2 y}{d x^2} = - a \times \frac{y}{a} ...............\left[\text{Using (1)} \right]\]
\[ \Rightarrow \frac{d^2 y}{d x^2} = - y \]
\[ \Rightarrow \frac{d^2 y}{d x^2} + y = 0\]
APPEARS IN
संबंधित प्रश्न
Hence, the given function is the solution to the given differential equation. \[\frac{c - x}{1 + cx}\] is a solution of the differential equation \[(1+x^2)\frac{dy}{dx}+(1+y^2)=0\].
Verify that \[y = ce^{tan^{- 1}} x\] is a solution of the differential equation \[\left( 1 + x^2 \right)\frac{d^2 y}{d x^2} + \left( 2x - 1 \right)\frac{dy}{dx} = 0\]
Show that the differential equation of which \[y = 2\left( x^2 - 1 \right) + c e^{- x^2}\] is a solution is \[\frac{dy}{dx} + 2xy = 4 x^3\]
For the following differential equation verify that the accompanying function is a solution:
Differential equation | Function |
\[x + y\frac{dy}{dx} = 0\]
|
\[y = \pm \sqrt{a^2 - x^2}\]
|
For the following differential equation verify that the accompanying function is a solution:
Differential equation | Function |
\[x^3 \frac{d^2 y}{d x^2} = 1\]
|
\[y = ax + b + \frac{1}{2x}\]
|
Differential equation \[\frac{dy}{dx} = y, y\left( 0 \right) = 1\]
Function y = ex
x cos y dy = (xex log x + ex) dx
Solve the following differential equation:
\[xy\frac{dy}{dx} = 1 + x + y + xy\]
Solve the following differential equation:
\[y\left( 1 - x^2 \right)\frac{dy}{dx} = x\left( 1 + y^2 \right)\]
In a bank principal increases at the rate of r% per year. Find the value of r if ₹100 double itself in 10 years (loge 2 = 0.6931).
x2 dy + y (x + y) dx = 0
2xy dx + (x2 + 2y2) dy = 0
Solve the following initial value problem:-
\[x\frac{dy}{dx} - y = \log x, y\left( 1 \right) = 0\]
Solve the following initial value problem:-
\[\frac{dy}{dx} - 3y \cot x = \sin 2x; y = 2\text{ when }x = \frac{\pi}{2}\]
A population grows at the rate of 5% per year. How long does it take for the population to double?
A curve is such that the length of the perpendicular from the origin on the tangent at any point P of the curve is equal to the abscissa of P. Prove that the differential equation of the curve is \[y^2 - 2xy\frac{dy}{dx} - x^2 = 0\], and hence find the curve.
Show that y = ae2x + be−x is a solution of the differential equation \[\frac{d^2 y}{d x^2} - \frac{dy}{dx} - 2y = 0\]
Form the differential equation of the family of circles having centre on y-axis and radius 3 unit.
Find the equation of the plane passing through the point (1, -2, 1) and perpendicular to the line joining the points A(3, 2, 1) and B(1, 4, 2).
In the following example, verify that the given function is a solution of the corresponding differential equation.
Solution | D.E. |
xy = log y + k | y' (1 - xy) = y2 |
Solve the following differential equation.
`dy/dx + y = e ^-x`
Solve the differential equation:
dr = a r dθ − θ dr
`dy/dx = log x`
Solve the differential equation xdx + 2ydy = 0
Solve `x^2 "dy"/"dx" - xy = 1 + cos(y/x)`, x ≠ 0 and x = 1, y = `pi/2`
Solution of `x("d"y)/("d"x) = y + x tan y/x` is `sin(y/x)` = cx
Solve the differential equation
`y (dy)/(dx) + x` = 0