Advertisements
Advertisements
प्रश्न
Solve the following initial value problem:-
\[\frac{dy}{dx} - 3y \cot x = \sin 2x; y = 2\text{ when }x = \frac{\pi}{2}\]
उत्तर
We have,
\[\frac{dy}{dx} - 3y \cot x = \sin 2x . . . . . \left( 1 \right)\]
Clearly, it is a linear differential equation of the form
\[\frac{dy}{dx} + Py = Q\]
\[\text{ where }P = - 3\cot x\text{ and }Q = \sin 2x\]
\[ \therefore I . F . = e^{\int P\ dx} \]
\[ = e^{- 3\int\cot x dx} \]
\[ = e^{- 3\log\left| \sin x \right|} = {cosec}^3 x\]
\[\text{ Multiplying both sides of }\left( 1 \right)\text{ by }I . F . = {\text{ cosec }}^3 x,\text{ we get }\]
\[ {\text{ cosec }}^3 x\left( \frac{dy}{dx} - 3y \cot x \right) = \sin 2x\left( {\text{ cosec }}^3 x \right)\]
\[ \Rightarrow {\text{ cosec }}^3 x\left( \frac{dy}{dx} - 3y \cot x \right) = 2\cot x\text{ cosec }x\]
Integrating both sides with respect to x, we get
\[y {\text{ cosec }}^3 x = 2\int\cot x\text{ cosec }x dx + C\]
\[ \Rightarrow y {\text{ cosec }}^3 x = - 2\text{ cosec }x + C\]
\[ \Rightarrow y = - 2 \sin^2 x + C \sin^3 x . . . . . \left( 2 \right)\]
Now,
\[y\left( \frac{\pi}{2} \right) = 2\]
\[ \therefore 2 = - 2 \sin^2 \frac{\pi}{2} + C \sin^3 \frac{\pi}{2}\]
\[ \Rightarrow C = 4\]
\[\text{ Putting the value of C in }\left( 2 \right),\text{ we get }\]
\[y = - 2 \sin^2 x + 4 \sin^3 x\]
\[ \Rightarrow y = 4 \sin^3 x - 2 \sin^2 x\]
\[\text{ Hence, }y = 4 \sin^3 x - 2 \sin^2 x\text{ is the required solution.}\]
APPEARS IN
संबंधित प्रश्न
Form the differential equation of the family of hyperbolas having foci on x-axis and centre at the origin.
Verify that y = \[\frac{a}{x} + b\] is a solution of the differential equation
\[\frac{d^2 y}{d x^2} + \frac{2}{x}\left( \frac{dy}{dx} \right) = 0\]
Differential equation \[\frac{dy}{dx} + y = 2, y \left( 0 \right) = 3\] Function y = e−x + 2
Solve the following initial value problem:-
\[y' + y = e^x , y\left( 0 \right) = \frac{1}{2}\]
Solve the following initial value problem:-
\[x\frac{dy}{dx} - y = \log x, y\left( 1 \right) = 0\]
If the interest is compounded continuously at 6% per annum, how much worth Rs 1000 will be after 10 years? How long will it take to double Rs 1000?
The slope of the tangent at a point P (x, y) on a curve is \[\frac{- x}{y}\]. If the curve passes through the point (3, −4), find the equation of the curve.
Integrating factor of the differential equation cos \[x\frac{dy}{dx} + y\] sin x = 1, is
The solution of the differential equation \[\frac{dy}{dx} = \frac{ax + g}{by + f}\] represents a circle when
The differential equation of the ellipse \[\frac{x^2}{a^2} + \frac{y^2}{b^2} = C\] is
What is integrating factor of \[\frac{dy}{dx}\] + y sec x = tan x?
Form the differential equation representing the family of parabolas having vertex at origin and axis along positive direction of x-axis.
Form the differential equation of the family of parabolas having vertex at origin and axis along positive y-axis.
Find the particular solution of the differential equation `"dy"/"dx" = "xy"/("x"^2+"y"^2),`given that y = 1 when x = 0
Solve the following differential equation.
`y^3 - dy/dx = x dy/dx`
For each of the following differential equations find the particular solution.
(x − y2 x) dx − (y + x2 y) dy = 0, when x = 2, y = 0
For the following differential equation find the particular solution.
`dy/ dx = (4x + y + 1),
when y = 1, x = 0
Solve the following differential equation.
y2 dx + (xy + x2 ) dy = 0
Solve the following differential equation.
`dy /dx +(x-2 y)/ (2x- y)= 0`
Solve the following differential equation.
`dy/dx + 2xy = x`
Solve the following differential equation.
dr + (2r)dθ= 8dθ
The solution of `dy/dx + x^2/y^2 = 0` is ______
Choose the correct alternative.
The solution of `x dy/dx = y` log y is
A solution of a differential equation which can be obtained from the general solution by giving particular values to the arbitrary constants is called ___________ solution.
Solve `("d"y)/("d"x) = (x + y + 1)/(x + y - 1)` when x = `2/3`, y = `1/3`
Solve the following differential equation `("d"y)/("d"x)` = x2y + y
Solve the following differential equation
`yx ("d"y)/("d"x)` = x2 + 2y2
Solve the following differential equation y2dx + (xy + x2) dy = 0
Integrating factor of the differential equation `"dy"/"dx" - y` = cos x is ex.