Advertisements
Advertisements
प्रश्न
उत्तर
We have,
\[x\frac{dy}{dx} + y = y^2 \]
\[ \Rightarrow x\frac{dy}{dx} = y^2 - y\]
\[ \Rightarrow \frac{1}{y^2 - y}dy = \frac{1}{x}dx\]
Integrating both sides, we get
\[\int\frac{1}{y^2 - y}dy = \int\frac{1}{x}dx\]
\[ \Rightarrow \int\frac{1}{y\left( y - 1 \right)}dy = \int\frac{1}{x}dx . . . . . \left( 1 \right)\]
\[\text{ Let }\frac{1}{y\left( y - 1 \right)} = \frac{A}{y} + \frac{B}{y - 1}\]
\[ \Rightarrow 1 = A\left( y - 1 \right) + B\left( y \right)\]
\[\text{ Putting }y = 0,\text{ we get }\]
\[1 = - A\]
\[ \Rightarrow A = - 1\]
\[\text{ Putting }y = 1, \text{ we get }\]
\[1 = B\]
\[ \therefore \frac{1}{y\left( y - 1 \right)} = \frac{- 1}{y} + \frac{1}{y - 1}\]
\[ \Rightarrow \int\frac{1}{y\left( y - 1 \right)}dy = \int\frac{- 1}{y} dy + \int\frac{1}{y - 1}dy . . . . . \left( 2 \right) \]
From (1) & (2), we get
\[\int\frac{- 1}{y} dy + \int\frac{1}{y - 1}dy = \int\frac{1}{x}dx \]
\[ \Rightarrow - \log \left| y \right| + \log \left| y - 1 \right| = \log \left| x \right| + \log C\]
\[ \Rightarrow \log \left| \frac{y - 1}{y} \right| - \log \left| x \right| = \log C\]
\[ \Rightarrow \log\left| \frac{y - 1}{xy} \right| = \log C\]
\[ \Rightarrow \frac{y - 1}{xy} = C\]
\[ \Rightarrow y - 1 = Cxy\]
\[\text{ Hence, }y - 1 = Cxy\text{ is the required solution .}\]
APPEARS IN
संबंधित प्रश्न
Form the differential equation representing the family of ellipses having centre at the origin and foci on x-axis.
Differential equation \[x\frac{dy}{dx} = 1, y\left( 1 \right) = 0\]
Function y = log x
Differential equation \[\frac{d^2 y}{d x^2} + y = 0, y \left( 0 \right) = 0, y' \left( 0 \right) = 1\] Function y = sin x
(1 + x) (1 + y2) dx + (1 + y) (1 + x2) dy = 0
(y + xy) dx + (x − xy2) dy = 0
Solve the following differential equation:
\[xy\frac{dy}{dx} = 1 + x + y + xy\]
Solve the following differential equation:
\[y e^\frac{x}{y} dx = \left( x e^\frac{x}{y} + y^2 \right)dy, y \neq 0\]
Solve the following differential equation:
\[\left( 1 + y^2 \right) \tan^{- 1} xdx + 2y\left( 1 + x^2 \right)dy = 0\]
Find the particular solution of edy/dx = x + 1, given that y = 3, when x = 0.
In a bank principal increases at the rate of 5% per year. An amount of Rs 1000 is deposited with this bank, how much will it worth after 10 years (e0.5 = 1.648).
Find the equation to the curve satisfying x (x + 1) \[\frac{dy}{dx} - y\] = x (x + 1) and passing through (1, 0).
Radium decomposes at a rate proportional to the quantity of radium present. It is found that in 25 years, approximately 1.1% of a certain quantity of radium has decomposed. Determine approximately how long it will take for one-half of the original amount of radium to decompose?
Find the equation of the curve passing through the point (0, 1) if the slope of the tangent to the curve at each of its point is equal to the sum of the abscissa and the product of the abscissa and the ordinate of the point.
Write the differential equation obtained by eliminating the arbitrary constant C in the equation x2 − y2 = C2.
Choose the correct option from the given alternatives:
The solution of `1/"x" * "dy"/"dx" = tan^-1 "x"` is
Solve the following differential equation.
`y^3 - dy/dx = x dy/dx`
Solve the following differential equation.
(x2 − y2 ) dx + 2xy dy = 0
Solve the following differential equation.
`(x + a) dy/dx = – y + a`
The solution of `dy/dx + x^2/y^2 = 0` is ______
State whether the following is True or False:
The degree of a differential equation is the power of the highest ordered derivative when all the derivatives are made free from negative and/or fractional indices if any.
Solve the differential equation:
`e^(dy/dx) = x`
Solve the following differential equation
`yx ("d"y)/("d"x)` = x2 + 2y2
Choose the correct alternative:
Differential equation of the function c + 4yx = 0 is
A solution of differential equation which can be obtained from the general solution by giving particular values to the arbitrary constant is called ______ solution
Solve the following differential equation `("d"y)/("d"x)` = cos(x + y)
Solution: `("d"y)/("d"x)` = cos(x + y) ......(1)
Put `square`
∴ `1 + ("d"y)/("d"x) = "dv"/("d"x)`
∴ `("d"y)/("d"x) = "dv"/("d"x) - 1`
∴ (1) becomes `"dv"/("d"x) - 1` = cos v
∴ `"dv"/("d"x)` = 1 + cos v
∴ `square` dv = dx
Integrating, we get
`int 1/(1 + cos "v") "d"v = int "d"x`
∴ `int 1/(2cos^2 ("v"/2)) "dv" = int "d"x`
∴ `1/2 int square "dv" = int "d"x`
∴ `1/2* (tan("v"/2))/(1/2)` = x + c
∴ `square` = x + c
Given that `"dy"/"dx"` = yex and x = 0, y = e. Find the value of y when x = 1.
Solve the differential equation `"dy"/"dx" + 2xy` = y
Solve the differential equation `"dy"/"dx"` = 1 + x + y2 + xy2, when y = 0, x = 0.
Solution of `x("d"y)/("d"x) = y + x tan y/x` is `sin(y/x)` = cx