मराठी

( X − 1 ) D Y D X = 2 X Y - Mathematics

Advertisements
Advertisements

प्रश्न

\[\left( x - 1 \right)\frac{dy}{dx} = 2 xy\]

उत्तर

We have,
\[\left( x - 1 \right)\frac{dy}{dx} = 2 xy\]
\[ \Rightarrow \left( x - 1 \right)dy = 2xy dx\]
\[ \Rightarrow \frac{2x}{\left( x - 1 \right)}dx = \frac{1}{y}dy\]
Integrating both sides, we get
\[2\int\frac{x}{\left( x - 1 \right)}dx = \int\frac{1}{y}dy\]
\[ \Rightarrow 2\int\frac{x - 1 + 1}{x - 1}dx = \int\frac{1}{y}dy\]
\[ \Rightarrow 2\int dx + 2\int\frac{1}{x - 1}dx = \int\frac{1}{y}dy\]
\[ \Rightarrow 2x + 2 \log\left| x - 1 \right| = \log\left| y \right| + C\]

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 22: Differential Equations - Exercise 22.07 [पृष्ठ ५५]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 22 Differential Equations
Exercise 22.07 | Q 1 | पृष्ठ ५५

व्हिडिओ ट्यूटोरियलVIEW ALL [2]

संबंधित प्रश्‍न

Differential equation \[x\frac{dy}{dx} = 1, y\left( 1 \right) = 0\]

Function y = log x


Differential equation \[\frac{dy}{dx} + y = 2, y \left( 0 \right) = 3\] Function y = e−x + 2


\[\frac{dy}{dx} + 2x = e^{3x}\]

\[\left( x^2 + 1 \right)\frac{dy}{dx} = 1\]

\[\left( x^3 + x^2 + x + 1 \right)\frac{dy}{dx} = 2 x^2 + x\]

C' (x) = 2 + 0.15 x ; C(0) = 100


(1 + x2) dy = xy dx


xy dy = (y − 1) (x + 1) dx


\[\frac{dy}{dx} = \frac{x e^x \log x + e^x}{x \cos y}\]

\[x\sqrt{1 - y^2} dx + y\sqrt{1 - x^2} dy = 0\]

y (1 + ex) dy = (y + 1) ex dx


Solve the following differential equation:
\[\text{ cosec }x \log y \frac{dy}{dx} + x^2 y^2 = 0\]


Find the particular solution of edy/dx = x + 1, given that y = 3, when x = 0.


Find the solution of the differential equation cos y dy + cos x sin y dx = 0 given that y = \[\frac{\pi}{2}\], when x = \[\frac{\pi}{2}\] 

 


\[\frac{dy}{dx}\cos\left( x - y \right) = 1\]

\[\frac{dy}{dx} + 1 = e^{x + y}\]

(x2 − y2) dx − 2xy dy = 0


2xy dx + (x2 + 2y2) dy = 0


Solve the following initial value problem:-

\[y' + y = e^x , y\left( 0 \right) = \frac{1}{2}\]


Solve the following initial value problem:-

\[\frac{dy}{dx} + 2y = e^{- 2x} \sin x, y\left( 0 \right) = 0\]


If the interest is compounded continuously at 6% per annum, how much worth Rs 1000 will be after 10 years? How long will it take to double Rs 1000?


The slope of the tangent at a point P (x, y) on a curve is \[\frac{- x}{y}\]. If the curve passes through the point (3, −4), find the equation of the curve.


The tangent at any point (x, y) of a curve makes an angle tan−1(2x + 3y) with x-axis. Find the equation of the curve if it passes through (1, 2).


The normal to a given curve at each point (x, y) on the curve passes through the point (3, 0). If the curve contains the point (3, 4), find its equation.


The slope of a curve at each of its points is equal to the square of the abscissa of the point. Find the particular curve through the point (−1, 1).


Define a differential equation.


Write the differential equation obtained eliminating the arbitrary constant C in the equation xy = C2.


Which of the following is the integrating factor of (x log x) \[\frac{dy}{dx} + y\] = 2 log x?


What is integrating factor of \[\frac{dy}{dx}\] + y sec x = tan x?


Solve the following differential equation : \[y^2 dx + \left( x^2 - xy + y^2 \right)dy = 0\] .


Show that y = ae2x + be−x is a solution of the differential equation \[\frac{d^2 y}{d x^2} - \frac{dy}{dx} - 2y = 0\]


Solve the following differential equation.

y dx + (x - y2 ) dy = 0


Solve: `("d"y)/("d"x) + 2/xy` = x2 


Solve the following differential equation

`yx ("d"y)/("d"x)` = x2 + 2y2 


Verify y = log x + c is the solution of differential equation `x ("d"^2y)/("d"x^2) + ("d"y)/("d"x)` = 0


Verify y = `a + b/x` is solution of `x(d^2y)/(dx^2) + 2 (dy)/(dx)` = 0

y = `a + b/x`

`(dy)/(dx) = square`

`(d^2y)/(dx^2) = square`

Consider `x(d^2y)/(dx^2) + 2(dy)/(dx)`

= `x square + 2 square`

= `square`

Hence y = `a + b/x` is solution of `square`


Given that `"dy"/"dx"` = yex and x = 0, y = e. Find the value of y when x = 1.


If `y = log_2 log_2(x)` then `(dy)/(dx)` =


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×