मराठी

C' (X) = 2 + 0.15 X ; C(0) = 100 - Mathematics

Advertisements
Advertisements

प्रश्न

C' (x) = 2 + 0.15 x ; C(0) = 100

उत्तर

We have, 
\[C' \left( x \right) = 2 + 0 . 15x\]
\[ \Rightarrow \frac{dC}{dx} = 2 + 0 . 15x\]
\[ \Rightarrow dC = \left( 2 + 0 . 15x \right)dx\]
Integrating both sides, we get
\[\int dC = \int\left( 2 + 0 . 15x \right) dx\]
\[ \Rightarrow C = 2x + \frac{0 . 15}{2} x^2 + D . . . . . \left( 1 \right)\]
\[\text{ It is given that C }\left( 0 \right) = 100 . \]
\[ \therefore 100 = 2\left( 0 \right) + \frac{0 . 15}{2}\left( 0 \right) + D\]
\[ \Rightarrow D = 100\]
\[\text{ Substituting the value of D in } \left( 1 \right), \text{ we get }\]
\[C = 2x + \frac{0 . 15}{2} x^2 + 100\]
\[\text{ Hence, }C = 2x + \frac{0 . 15}{2} x^2 + 100 \text{ is the solution to the given differential equation .}\]
shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 22: Differential Equations - Exercise 22.05 [पृष्ठ ३४]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 22 Differential Equations
Exercise 22.05 | Q 24 | पृष्ठ ३४

व्हिडिओ ट्यूटोरियलVIEW ALL [2]

संबंधित प्रश्‍न

\[\left( \frac{dy}{dx} \right)^2 + \frac{1}{dy/dx} = 2\]

\[y\frac{d^2 x}{d y^2} = y^2 + 1\]

Show that Ax2 + By2 = 1 is a solution of the differential equation x \[\left\{ y\frac{d^2 y}{d x^2} + \left( \frac{dy}{dx} \right)^2 \right\} = y\frac{dy}{dx}\]

 


Show that y = ex (A cos x + B sin x) is the solution of the differential equation \[\frac{d^2 y}{d x^2} - 2\frac{dy}{dx} + 2y = 0\]


Verify that y2 = 4a (x + a) is a solution of the differential equations
\[y\left\{ 1 - \left( \frac{dy}{dx} \right)^2 \right\} = 2x\frac{dy}{dx}\]


Show that y = e−x + ax + b is solution of the differential equation\[e^x \frac{d^2 y}{d x^2} = 1\]

 


Differential equation \[\frac{d^2 y}{d x^2} - y = 0, y \left( 0 \right) = 2, y' \left( 0 \right) = 0\] Function y = ex + ex


\[\left( x + 2 \right)\frac{dy}{dx} = x^2 + 3x + 7\]

\[\frac{dy}{dx} - x \sin^2 x = \frac{1}{x \log x}\]

\[\frac{dy}{dx} = \sin^2 y\]

xy (y + 1) dy = (x2 + 1) dx


\[\frac{dr}{dt} = - rt, r\left( 0 \right) = r_0\]

\[\frac{dy}{dx} = \frac{\left( x - y \right) + 3}{2\left( x - y \right) + 5}\]

\[\frac{dy}{dx} = \tan\left( x + y \right)\]

\[\frac{dy}{dx} = \frac{y^2 - x^2}{2xy}\]

(x2 − y2) dx − 2xy dy = 0


3x2 dy = (3xy + y2) dx


\[\left[ x\sqrt{x^2 + y^2} - y^2 \right] dx + xy\ dy = 0\]

Solve the following initial value problem:-

\[\frac{dy}{dx} + 2y \tan x = \sin x; y = 0\text{ when }x = \frac{\pi}{3}\]


Solve the following initial value problem:-

\[dy = \cos x\left( 2 - y\text{ cosec }x \right)dx\]


The equation of the curve whose slope is given by \[\frac{dy}{dx} = \frac{2y}{x}; x > 0, y > 0\] and which passes through the point (1, 1) is


The solution of the differential equation \[\frac{dy}{dx} = \frac{ax + g}{by + f}\] represents a circle when


The solution of the differential equation y1 y3 = y22 is


What is integrating factor of \[\frac{dy}{dx}\] + y sec x = tan x?


In the following verify that the given functions (explicit or implicit) is a solution of the corresponding differential equation:-

`y=sqrt(a^2-x^2)`              `x+y(dy/dx)=0`


For each of the following differential equations find the particular solution.

`y (1 + logx)dx/dy - x log x = 0`,

when x=e, y = e2.


Solve the following differential equation.

`x^2 dy/dx = x^2 +xy - y^2`


Solve the following differential equation.

`dy/dx + y = e ^-x`


Solve the following differential equation.

y dx + (x - y2 ) dy = 0


Solve the following differential equation.

`dy/dx + 2xy = x`


Solve the following differential equation.

`(x + a) dy/dx = – y + a`


Solve the following differential equation.

dr + (2r)dθ= 8dθ


The differential equation of `y = k_1e^x+ k_2 e^-x` is ______.


 `dy/dx = log x`


Solve the differential equation xdx + 2ydy = 0


Solve the following differential equation y log y = `(log  y - x) ("d"y)/("d"x)`


State whether the following statement is True or False:

The integrating factor of the differential equation `("d"y)/("d"x) - y` = x is e–x 


Solve the following differential equation `("d"y)/("d"x)` = x2y + y


lf the straight lines `ax + by + p` = 0 and `x cos alpha + y sin alpha = p` are inclined at an angle π/4 and concurrent with the straight line `x sin alpha - y cos alpha` = 0, then the value of `a^2 + b^2` is


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×