Advertisements
Advertisements
प्रश्न
C' (x) = 2 + 0.15 x ; C(0) = 100
उत्तर
\[C' \left( x \right) = 2 + 0 . 15x\]
\[ \Rightarrow \frac{dC}{dx} = 2 + 0 . 15x\]
\[ \Rightarrow dC = \left( 2 + 0 . 15x \right)dx\]
Integrating both sides, we get
\[\int dC = \int\left( 2 + 0 . 15x \right) dx\]
\[ \Rightarrow C = 2x + \frac{0 . 15}{2} x^2 + D . . . . . \left( 1 \right)\]
\[\text{ It is given that C }\left( 0 \right) = 100 . \]
\[ \therefore 100 = 2\left( 0 \right) + \frac{0 . 15}{2}\left( 0 \right) + D\]
\[ \Rightarrow D = 100\]
\[\text{ Substituting the value of D in } \left( 1 \right), \text{ we get }\]
\[C = 2x + \frac{0 . 15}{2} x^2 + 100\]
\[\text{ Hence, }C = 2x + \frac{0 . 15}{2} x^2 + 100 \text{ is the solution to the given differential equation .}\]
APPEARS IN
संबंधित प्रश्न
Show that Ax2 + By2 = 1 is a solution of the differential equation x \[\left\{ y\frac{d^2 y}{d x^2} + \left( \frac{dy}{dx} \right)^2 \right\} = y\frac{dy}{dx}\]
Show that y = ex (A cos x + B sin x) is the solution of the differential equation \[\frac{d^2 y}{d x^2} - 2\frac{dy}{dx} + 2y = 0\]
Verify that y2 = 4a (x + a) is a solution of the differential equations
\[y\left\{ 1 - \left( \frac{dy}{dx} \right)^2 \right\} = 2x\frac{dy}{dx}\]
Show that y = e−x + ax + b is solution of the differential equation\[e^x \frac{d^2 y}{d x^2} = 1\]
Differential equation \[\frac{d^2 y}{d x^2} - y = 0, y \left( 0 \right) = 2, y' \left( 0 \right) = 0\] Function y = ex + e−x
xy (y + 1) dy = (x2 + 1) dx
(x2 − y2) dx − 2xy dy = 0
3x2 dy = (3xy + y2) dx
Solve the following initial value problem:-
\[\frac{dy}{dx} + 2y \tan x = \sin x; y = 0\text{ when }x = \frac{\pi}{3}\]
Solve the following initial value problem:-
\[dy = \cos x\left( 2 - y\text{ cosec }x \right)dx\]
The equation of the curve whose slope is given by \[\frac{dy}{dx} = \frac{2y}{x}; x > 0, y > 0\] and which passes through the point (1, 1) is
The solution of the differential equation \[\frac{dy}{dx} = \frac{ax + g}{by + f}\] represents a circle when
The solution of the differential equation y1 y3 = y22 is
What is integrating factor of \[\frac{dy}{dx}\] + y sec x = tan x?
In the following verify that the given functions (explicit or implicit) is a solution of the corresponding differential equation:-
`y=sqrt(a^2-x^2)` `x+y(dy/dx)=0`
For each of the following differential equations find the particular solution.
`y (1 + logx)dx/dy - x log x = 0`,
when x=e, y = e2.
Solve the following differential equation.
`x^2 dy/dx = x^2 +xy - y^2`
Solve the following differential equation.
`dy/dx + y = e ^-x`
Solve the following differential equation.
y dx + (x - y2 ) dy = 0
Solve the following differential equation.
`dy/dx + 2xy = x`
Solve the following differential equation.
`(x + a) dy/dx = – y + a`
Solve the following differential equation.
dr + (2r)dθ= 8dθ
The differential equation of `y = k_1e^x+ k_2 e^-x` is ______.
`dy/dx = log x`
Solve the differential equation xdx + 2ydy = 0
Solve the following differential equation y log y = `(log y - x) ("d"y)/("d"x)`
State whether the following statement is True or False:
The integrating factor of the differential equation `("d"y)/("d"x) - y` = x is e–x
Solve the following differential equation `("d"y)/("d"x)` = x2y + y
lf the straight lines `ax + by + p` = 0 and `x cos alpha + y sin alpha = p` are inclined at an angle π/4 and concurrent with the straight line `x sin alpha - y cos alpha` = 0, then the value of `a^2 + b^2` is