मराठी
महाराष्ट्र राज्य शिक्षण मंडळएचएससी वाणिज्य (इंग्रजी माध्यम) इयत्ता १२ वी

Solve the following differential equation. dydx+y=e-x - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

Solve the following differential equation.

`dy/dx + y = e ^-x`

बेरीज

उत्तर

`dy/dx + y = e ^-x`

The given equation is of the form

`dy/dx + py = Q`

where, P = 1 and Q = e-x

∴ I.F. = `e int ^(pdx) = e int ^(1.dx)= e^x`

∴  Solution of the given equation is

`y (I.F.) = int Q (I.F.) dx + c`

∴  `y e^x = int e^-x e ^xdx+c`

∴  `y e^x = int 1dx +c`

∴  y ex = x+c

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 8: Differential Equation and Applications - Exercise 8.5 [पृष्ठ १६८]

APPEARS IN

बालभारती Mathematics and Statistics 1 (Commerce) [English] 12 Standard HSC Maharashtra State Board
पाठ 8 Differential Equation and Applications
Exercise 8.5 | Q 1.1 | पृष्ठ १६८

संबंधित प्रश्‍न

Verify that y = cx + 2c2 is a solution of the differential equation 

\[2 \left( \frac{dy}{dx} \right)^2 + x\frac{dy}{dx} - y = 0\].

Verify that y = log \[\left( x + \sqrt{x^2 + a^2} \right)^2\]  satisfies the differential equation \[\left( a^2 + x^2 \right)\frac{d^2 y}{d x^2} + x\frac{dy}{dx} = 0\]


For the following differential equation verify that the accompanying function is a solution:

Differential equation Function
\[y = \left( \frac{dy}{dx} \right)^2\]
\[y = \frac{1}{4} \left( x \pm a \right)^2\]

\[\frac{dy}{dx} + \frac{1 + y^2}{y} = 0\]

(1 − x2) dy + xy dx = xy2 dx


Solve the following differential equation:
\[y e^\frac{x}{y} dx = \left( x e^\frac{x}{y} + y^2 \right)dy, y \neq 0\]

 


\[\frac{dy}{dx}\cos\left( x - y \right) = 1\]

\[\frac{dy}{dx} = \tan\left( x + y \right)\]

x2 dy + y (x + y) dx = 0


\[x^2 \frac{dy}{dx} = x^2 - 2 y^2 + xy\]

Solve the following initial value problem:
\[x\frac{dy}{dx} + y = x \cos x + \sin x, y\left( \frac{\pi}{2} \right) = 1\]


Solve the following initial value problem:-

\[\frac{dy}{dx} - 3y \cot x = \sin 2x; y = 2\text{ when }x = \frac{\pi}{2}\]


Find the equation of the curve such that the portion of the x-axis cut off between the origin and the tangent at a point is twice the abscissa and which passes through the point (1, 2).


Form the differential equation of the family of circles having centre on y-axis and radius 3 unit.


Form the differential equation from the relation x2 + 4y2 = 4b2


Solve the following differential equation.

`(dθ)/dt  = − k (θ − θ_0)`


For  the following differential equation find the particular solution.

`dy/ dx = (4x + y + 1),

when  y = 1, x = 0


Solve the following differential equation.

`x^2 dy/dx = x^2 +xy - y^2`


Choose the correct alternative.

The solution of `x dy/dx = y` log y is


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×