मराठी

Form the Differential Equation of the Family of Circles Having Centre on Y-axis and Radius 3 Unit. - Mathematics

Advertisements
Advertisements

प्रश्न

Form the differential equation of the family of circles having centre on y-axis and radius 3 unit.

बेरीज

उत्तर

The equation of the family of circles with radius 3 units, having its centre on y-axis, is given by

\[x^2 + \left( y - a \right)^2 = 3^2 . . . . . \left( 1 \right)\]

Here, a is any arbitrary constant.

Since this equation has only one arbitrary constant, we get a first order differential equation.

Differentiating (1) with respect to x, we get

\[2x + 2\left( y - a \right)\frac{dy}{dx} = 0\]

\[ \Rightarrow x + \left( y - a \right)\frac{dy}{dx} = 0\]

\[ \Rightarrow x = \left( a - y \right)\frac{dy}{dx}\]

\[ \Rightarrow \frac{x}{\frac{dy}{dx}} = a - y\]

\[ \Rightarrow a = y + \frac{x}{\frac{dy}{dx}}\]

Substituting the value of a in (1), we get

\[x^2 + \left( y - \left(y + \frac{x}{\frac{dy}{dx}}\right) \right)^2 = 3^2 \]

\[x^2 + \left( y - y - \frac{x}{\frac{dy}{dx}} \right)^2 = 3^2 \]
\[ \Rightarrow x^2 + \frac{x^2}{\left( \frac{dy}{dx} \right)^2} = 9\]

\[ \Rightarrow x^2 \left( \frac{dy}{dx} \right)^2 + x^2 = 9 \left( \frac{dy}{dx} \right)^2 \]

\[ \Rightarrow x^2 \left( \frac{dy}{dx} \right)^2 - 9 \left( \frac{dy}{dx} \right)^2 + x^2 = 0\]

\[ \Rightarrow \left( x^2 - 9 \right) \left( \frac{dy}{dx} \right)^2 + x^2 = 0\]

\[ \Rightarrow \left( x^2 - 9 \right) \left( y' \right)^2 + x^2 = 0\]

\[\text{Hence, }\left( x^2 - 9 \right) \left( y' \right)^2 + x^2 = 0\text{ is the required differential equation.}\]

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 22: Differential Equations - Revision Exercise [पृष्ठ १४५]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 22 Differential Equations
Revision Exercise | Q 7 | पृष्ठ १४५

व्हिडिओ ट्यूटोरियलVIEW ALL [2]

संबंधित प्रश्‍न

Show that the function y = A cos x + B sin x is a solution of the differential equation \[\frac{d^2 y}{d x^2} + y = 0\]


For the following differential equation verify that the accompanying function is a solution:

Differential equation Function
\[x\frac{dy}{dx} = y\]
y = ax

Differential equation \[x\frac{dy}{dx} = 1, y\left( 1 \right) = 0\]

Function y = log x


Differential equation \[\frac{d^2 y}{d x^2} + y = 0, y \left( 0 \right) = 1, y' \left( 0 \right) = 1\] Function y = sin x + cos x


\[\frac{dy}{dx} = x \log x\]

(1 + x2) dy = xy dx


\[\frac{dy}{dx} = y \sin 2x, y\left( 0 \right) = 1\]

Solve the differential equation \[x\frac{dy}{dx} + \cot y = 0\] given that \[y = \frac{\pi}{4}\], when \[x=\sqrt{2}\]


Find the particular solution of edy/dx = x + 1, given that y = 3, when x = 0.


Find the solution of the differential equation cos y dy + cos x sin y dx = 0 given that y = \[\frac{\pi}{2}\], when x = \[\frac{\pi}{2}\] 

 


x2 dy + y (x + y) dx = 0


\[\frac{dy}{dx} = \frac{x + y}{x - y}\]

Solve the following initial value problem:-

\[\frac{dy}{dx} + 2y = e^{- 2x} \sin x, y\left( 0 \right) = 0\]


Solve the following initial value problem:
\[\frac{dy}{dx} + y \cot x = 4x\text{ cosec }x, y\left( \frac{\pi}{2} \right) = 0\]


Solve the following initial value problem:-

\[\frac{dy}{dx} + y\cot x = 2\cos x, y\left( \frac{\pi}{2} \right) = 0\]


Solve the following initial value problem:-

\[dy = \cos x\left( 2 - y\text{ cosec }x \right)dx\]


The population of a city increases at a rate proportional to the number of inhabitants present at any time t. If the population of the city was 200000 in 1990 and 250000 in 2000, what will be the population in 2010?


Show that the equation of the curve whose slope at any point is equal to y + 2x and which passes through the origin is y + 2 (x + 1) = 2e2x.


At every point on a curve the slope is the sum of the abscissa and the product of the ordinate and the abscissa, and the curve passes through (0, 1). Find the equation of the curve.


Radium decomposes at a rate proportional to the quantity of radium present. It is found that in 25 years, approximately 1.1% of a certain quantity of radium has decomposed. Determine approximately how long it will take for one-half of the original amount of  radium to decompose?


Find the equation of the curve that passes through the point (0, a) and is such that at any point (x, y) on it, the product of its slope and the ordinate is equal to the abscissa.


The x-intercept of the tangent line to a curve is equal to the ordinate of the point of contact. Find the particular curve through the point (1, 1).


If sin x is an integrating factor of the differential equation \[\frac{dy}{dx} + Py = Q\], then write the value of P.


Integrating factor of the differential equation cos \[x\frac{dy}{dx} + y\] sin x = 1, is


The solution of the differential equation \[\frac{dy}{dx} = \frac{ax + g}{by + f}\] represents a circle when


The solution of the differential equation y1 y3 = y22 is


The differential equation of the ellipse \[\frac{x^2}{a^2} + \frac{y^2}{b^2} = C\] is


Solve the following differential equation.

`dy/dx = x^2 y + y`


Solve the following differential equation.

xdx + 2y dx = 0


Solve the following differential equation.

y2 dx + (xy + x2 ) dy = 0


 `dy/dx = log x`


y dx – x dy + log x dx = 0


Solve `("d"y)/("d"x) = (x + y + 1)/(x + y - 1)` when x = `2/3`, y = `1/3`


For the differential equation, find the particular solution

`("d"y)/("d"x)` = (4x +y + 1), when y = 1, x = 0


Solve the following differential equation `("d"y)/("d"x)` = x2y + y


Solve the differential equation `"dy"/"dx"` = 1 + x + y2 + xy2, when y = 0, x = 0.


lf the straight lines `ax + by + p` = 0 and `x cos alpha + y sin alpha = p` are inclined at an angle π/4 and concurrent with the straight line `x sin alpha - y cos alpha` = 0, then the value of `a^2 + b^2` is


A man is moving away from a tower 41.6 m high at a rate of 2 m/s. If the eye level of the man is 1.6 m above the ground, then the rate at which the angle of elevation of the top of the tower changes, when he is at a distance of 30 m from the foot of the tower, is


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×