मराठी
महाराष्ट्र राज्य शिक्षण मंडळएचएससी वाणिज्य (इंग्रजी माध्यम) इयत्ता १२ वी

Dydx=logx - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

 `dy/dx = log x`

बेरीज

उत्तर

 `dy/dx = log x`

∴ dy = log x dx

Integrating on both sides, we get

∫ 1 dy =∫  (log x × 1) dx

∴ `y = log x ( int1dx )  – int [ d/dx (logx) int  1dx] `

∴ `y = log x(x) – int (1/x xx x ) dx`

= x log x – ∫ 1dx

∴ y = x log x – x + c

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 8: Differential Equation and Applications - Miscellaneous Exercise 8 [पृष्ठ १७३]

APPEARS IN

बालभारती Mathematics and Statistics 1 (Commerce) [English] 12 Standard HSC Maharashtra State Board
पाठ 8 Differential Equation and Applications
Miscellaneous Exercise 8 | Q 4.16 | पृष्ठ १७३

संबंधित प्रश्‍न

Find the differential equation of all the parabolas with latus rectum '4a' and whose axes are parallel to x-axis.


Show that Ax2 + By2 = 1 is a solution of the differential equation x \[\left\{ y\frac{d^2 y}{d x^2} + \left( \frac{dy}{dx} \right)^2 \right\} = y\frac{dy}{dx}\]

 


Verify that y = cx + 2c2 is a solution of the differential equation 

\[2 \left( \frac{dy}{dx} \right)^2 + x\frac{dy}{dx} - y = 0\].

Verify that y = log \[\left( x + \sqrt{x^2 + a^2} \right)^2\]  satisfies the differential equation \[\left( a^2 + x^2 \right)\frac{d^2 y}{d x^2} + x\frac{dy}{dx} = 0\]


Differential equation \[\frac{dy}{dx} + y = 2, y \left( 0 \right) = 3\] Function y = e−x + 2


\[\frac{dy}{dx} = \sin^2 y\]

\[x\frac{dy}{dx} + \cot y = 0\]

\[\frac{dy}{dx} = 2 e^{2x} y^2 , y\left( 0 \right) = - 1\]

\[\frac{dy}{dx} = \frac{y - x}{y + x}\]

(x2 − y2) dx − 2xy dy = 0


Find the equation to the curve satisfying x (x + 1) \[\frac{dy}{dx} - y\]  = x (x + 1) and passing through (1, 0).


Write the differential equation representing the family of straight lines y = Cx + 5, where C is an arbitrary constant.


The differential equation obtained on eliminating A and B from y = A cos ωt + B sin ωt, is


In the following verify that the given functions (explicit or implicit) is a solution of the corresponding differential equation:-

`y=sqrt(a^2-x^2)`              `x+y(dy/dx)=0`


Solve the differential equation:

`"x"("dy")/("dx")+"y"=3"x"^2-2`


y dx – x dy + log x dx = 0


Solve the following differential equation y log y = `(log  y - x) ("d"y)/("d"x)`


Choose the correct alternative:

Solution of the equation `x("d"y)/("d"x)` = y log y is


Given that `"dy"/"dx"` = yex and x = 0, y = e. Find the value of y when x = 1.


Solve the differential equation `"dy"/"dx"` = 1 + x + y2 + xy2, when y = 0, x = 0.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×