Advertisements
Advertisements
प्रश्न
(x2 − y2) dx − 2xy dy = 0
उत्तर
We have,
\[\left( x^2 - y^2 \right) dx - 2xy dy = 0\]
\[ \Rightarrow \frac{dy}{dx} = \frac{x^2 - y^2}{2xy}\]
This is a homogeneous differential equation .
\[\text{ Putting }y = vx\text{ and }\frac{dy}{dx} = v + x\frac{dv}{dx},\text{ we get }\]
\[v + x\frac{dv}{dx} = \frac{x^2 - \left( vx \right)^2}{2x\left( vx \right)}\]
\[ \Rightarrow v + x\frac{dv}{dx} = \frac{x^2 - v^2 x^2}{2v x^2}\]
\[ \Rightarrow v + x\frac{dv}{dx} = \frac{1 - v^2}{2v}\]
\[ \Rightarrow x\frac{dv}{dx} = \frac{1 - v^2}{2v} - v\]
\[ \Rightarrow x\frac{dv}{dx} = \frac{1 - 3 v^2}{2v}\]
\[ \Rightarrow \frac{2v}{1 - 3 v^2}dv = \frac{1}{x}dx\]
Integrating both sides, we get
\[\int\frac{2v}{1 - 3 v^2}dv = \int\frac{1}{x}dx\]
\[ \Rightarrow - \frac{1}{3}\int\frac{- 6v}{1 - 3 v^2}dv = \int\frac{1}{x}dx\]
\[ \Rightarrow - \frac{1}{3}\log \left| 1 - 3 v^2 \right| = \log \left| x \right| + \log C\]
\[ \Rightarrow \log \left| 1 - 3 v^2 \right| = - 3\log \left| Cx \right|\]
\[ \Rightarrow \log \left| 1 - 3 v^2 \right| = \log \left| \frac{1}{\left( Cx \right)^3} \right|\]
\[ \Rightarrow 1 - 3 v^2 = \frac{1}{\left( Cx \right)^3}\]
\[\text{ Putting }v = \frac{y}{x},\text{ we get }\]
\[1 - 3 \left( \frac{y}{x} \right)^2 = \frac{1}{\left( Cx \right)^3}\]
\[ \Rightarrow \frac{x^2 - 3 y^2}{x^2} = \frac{1}{C^3 x^3}\]
\[ \Rightarrow x\left( x^2 - 3 y^2 \right) = \frac{1}{C^3}\]
\[ \Rightarrow x\left( x^2 - 3 y^2 \right) = K ...........\left(\text{where, }K = \frac{1}{C^3} \right)\]
APPEARS IN
संबंधित प्रश्न
Differential equation \[\frac{dy}{dx} = y, y\left( 0 \right) = 1\]
Function y = ex
(1 − x2) dy + xy dx = xy2 dx
(y2 + 1) dx − (x2 + 1) dy = 0
Find the particular solution of edy/dx = x + 1, given that y = 3, when x = 0.
Find the particular solution of the differential equation \[\frac{dy}{dx} = - 4x y^2\] given that y = 1, when x = 0.
2xy dx + (x2 + 2y2) dy = 0
Solve the following initial value problem:-
\[\left( 1 + y^2 \right) dx + \left( x - e^{- \tan^{- 1} y} \right) dx = 0, y\left( 0 \right) = 0\]
The surface area of a balloon being inflated, changes at a rate proportional to time t. If initially its radius is 1 unit and after 3 seconds it is 2 units, find the radius after time t.
The normal to a given curve at each point (x, y) on the curve passes through the point (3, 0). If the curve contains the point (3, 4), find its equation.
If sin x is an integrating factor of the differential equation \[\frac{dy}{dx} + Py = Q\], then write the value of P.
The integrating factor of the differential equation \[x\frac{dy}{dx} - y = 2 x^2\]
In the following verify that the given functions (explicit or implicit) is a solution of the corresponding differential equation:-
`y=sqrt(a^2-x^2)` `x+y(dy/dx)=0`
Form the differential equation representing the family of curves y = a sin (x + b), where a, b are arbitrary constant.
Form the differential equation representing the family of parabolas having vertex at origin and axis along positive direction of x-axis.
Solve the differential equation:
`"x"("dy")/("dx")+"y"=3"x"^2-2`
Choose the correct option from the given alternatives:
The differential equation `"y" "dy"/"dx" + "x" = 0` represents family of
Solve the following differential equation.
`xy dy/dx = x^2 + 2y^2`
The differential equation of `y = k_1e^x+ k_2 e^-x` is ______.
Solve the differential equation:
dr = a r dθ − θ dr
`dy/dx = log x`
Solve the differential equation (x2 – yx2)dy + (y2 + xy2)dx = 0
For the differential equation, find the particular solution
`("d"y)/("d"x)` = (4x +y + 1), when y = 1, x = 0
Solve the following differential equation
sec2 x tan y dx + sec2 y tan x dy = 0
Solution: sec2 x tan y dx + sec2 y tan x dy = 0
∴ `(sec^2x)/tanx "d"x + square` = 0
Integrating, we get
`square + int (sec^2y)/tany "d"y` = log c
Each of these integral is of the type
`int ("f'"(x))/("f"(x)) "d"x` = log |f(x)| + log c
∴ the general solution is
`square + log |tan y|` = log c
∴ log |tan x . tan y| = log c
`square`
This is the general solution.
Integrating factor of the differential equation `x "dy"/"dx" - y` = sinx is ______.
Given that `"dy"/"dx" = "e"^-2x` and y = 0 when x = 5. Find the value of x when y = 3.
Solution of `x("d"y)/("d"x) = y + x tan y/x` is `sin(y/x)` = cx