मराठी

(X2 − Y2) Dx − 2xy Dy = 0 - Mathematics

Advertisements
Advertisements

प्रश्न

(x2 − y2) dx − 2xy dy = 0

बेरीज

उत्तर

We have,
\[\left( x^2 - y^2 \right) dx - 2xy dy = 0\]
\[ \Rightarrow \frac{dy}{dx} = \frac{x^2 - y^2}{2xy}\]
This is a homogeneous differential equation .
\[\text{ Putting }y = vx\text{ and }\frac{dy}{dx} = v + x\frac{dv}{dx},\text{ we get }\]
\[v + x\frac{dv}{dx} = \frac{x^2 - \left( vx \right)^2}{2x\left( vx \right)}\]
\[ \Rightarrow v + x\frac{dv}{dx} = \frac{x^2 - v^2 x^2}{2v x^2}\]
\[ \Rightarrow v + x\frac{dv}{dx} = \frac{1 - v^2}{2v}\]
\[ \Rightarrow x\frac{dv}{dx} = \frac{1 - v^2}{2v} - v\]
\[ \Rightarrow x\frac{dv}{dx} = \frac{1 - 3 v^2}{2v}\]
\[ \Rightarrow \frac{2v}{1 - 3 v^2}dv = \frac{1}{x}dx\]
Integrating both sides, we get
\[\int\frac{2v}{1 - 3 v^2}dv = \int\frac{1}{x}dx\]
\[ \Rightarrow - \frac{1}{3}\int\frac{- 6v}{1 - 3 v^2}dv = \int\frac{1}{x}dx\]
\[ \Rightarrow - \frac{1}{3}\log \left| 1 - 3 v^2 \right| = \log \left| x \right| + \log C\]
\[ \Rightarrow \log \left| 1 - 3 v^2 \right| = - 3\log \left| Cx \right|\]
\[ \Rightarrow \log \left| 1 - 3 v^2 \right| = \log \left| \frac{1}{\left( Cx \right)^3} \right|\]
\[ \Rightarrow 1 - 3 v^2 = \frac{1}{\left( Cx \right)^3}\]
\[\text{ Putting }v = \frac{y}{x},\text{ we get }\]
\[1 - 3 \left( \frac{y}{x} \right)^2 = \frac{1}{\left( Cx \right)^3}\]
\[ \Rightarrow \frac{x^2 - 3 y^2}{x^2} = \frac{1}{C^3 x^3}\]
\[ \Rightarrow x\left( x^2 - 3 y^2 \right) = \frac{1}{C^3}\]
\[ \Rightarrow x\left( x^2 - 3 y^2 \right) = K ...........\left(\text{where, }K = \frac{1}{C^3} \right)\]

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 22: Differential Equations - Exercise 22.09 [पृष्ठ ८३]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 22 Differential Equations
Exercise 22.09 | Q 5 | पृष्ठ ८३

व्हिडिओ ट्यूटोरियलVIEW ALL [2]

संबंधित प्रश्‍न

\[y\frac{d^2 x}{d y^2} = y^2 + 1\]

Differential equation \[\frac{dy}{dx} = y, y\left( 0 \right) = 1\]
Function y = ex


\[\left( x + 2 \right)\frac{dy}{dx} = x^2 + 3x + 7\]

\[\left( 1 + x^2 \right)\frac{dy}{dx} - x = 2 \tan^{- 1} x\]

\[\frac{dy}{dx} = x e^x - \frac{5}{2} + \cos^2 x\]

\[\frac{dy}{dx} = \sin^2 y\]

\[\frac{dy}{dx} = \left( e^x + 1 \right) y\]

(1 − x2) dy + xy dx = xy2 dx


(y2 + 1) dx − (x2 + 1) dy = 0


\[2x\frac{dy}{dx} = 3y, y\left( 1 \right) = 2\]

Find the particular solution of edy/dx = x + 1, given that y = 3, when x = 0.


Find the particular solution of the differential equation \[\frac{dy}{dx} = - 4x y^2\]  given that y = 1, when x = 0.


\[\cos^2 \left( x - 2y \right) = 1 - 2\frac{dy}{dx}\]

\[\frac{dy}{dx} = \sec\left( x + y \right)\]

\[x^2 \frac{dy}{dx} = x^2 - 2 y^2 + xy\]

2xy dx + (x2 + 2y2) dy = 0


\[x\frac{dy}{dx} = y - x \cos^2 \left( \frac{y}{x} \right)\]

Solve the following initial value problem:-

\[\left( 1 + y^2 \right) dx + \left( x - e^{- \tan^{- 1} y} \right) dx = 0, y\left( 0 \right) = 0\]


The surface area of a balloon being inflated, changes at a rate proportional to time t. If initially its radius is 1 unit and after 3 seconds it is 2 units, find the radius after time t.


The normal to a given curve at each point (x, y) on the curve passes through the point (3, 0). If the curve contains the point (3, 4), find its equation.


If sin x is an integrating factor of the differential equation \[\frac{dy}{dx} + Py = Q\], then write the value of P.


The integrating factor of the differential equation \[x\frac{dy}{dx} - y = 2 x^2\]


In the following verify that the given functions (explicit or implicit) is a solution of the corresponding differential equation:-

`y=sqrt(a^2-x^2)`              `x+y(dy/dx)=0`


Form the differential equation representing the family of curves y = a sin (x + b), where ab are arbitrary constant.


Form the differential equation representing the family of parabolas having vertex at origin and axis along positive direction of x-axis.


Solve the differential equation:

`"x"("dy")/("dx")+"y"=3"x"^2-2`


Choose the correct option from the given alternatives:

The differential equation `"y" "dy"/"dx" + "x" = 0` represents family of


Solve the following differential equation.

`xy  dy/dx = x^2 + 2y^2`


The differential equation of `y = k_1e^x+ k_2 e^-x` is ______.


Solve the differential equation:

dr = a r dθ − θ dr


 `dy/dx = log x`


Solve the differential equation (x2 – yx2)dy + (y2 + xy2)dx = 0


For the differential equation, find the particular solution

`("d"y)/("d"x)` = (4x +y + 1), when y = 1, x = 0


Solve the following differential equation 

sec2 x tan y dx + sec2 y tan x dy = 0

Solution: sec2 x tan y dx + sec2 y tan x dy = 0

∴ `(sec^2x)/tanx  "d"x + square` = 0

Integrating, we get

`square + int (sec^2y)/tany  "d"y` = log c

Each of these integral is of the type

`int ("f'"(x))/("f"(x))  "d"x` = log |f(x)| + log c

∴ the general solution is

`square + log |tan y|` = log c

∴ log |tan x . tan y| = log c

`square`

This is the general solution.


Integrating factor of the differential equation `x "dy"/"dx" - y` = sinx is ______.


Given that `"dy"/"dx" = "e"^-2x` and y = 0 when x = 5. Find the value of x when y = 3.


Solution of `x("d"y)/("d"x) = y + x tan  y/x` is `sin(y/x)` = cx


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×