मराठी

(Y2 + 1) Dx − (X2 + 1) Dy = 0 - Mathematics

Advertisements
Advertisements

प्रश्न

(y2 + 1) dx − (x2 + 1) dy = 0

उत्तर

We have,
\[\left( y^2 + 1 \right) dx - \left( x^2 + 1 \right) dy = 0\]
\[ \Rightarrow \left( y^2 + 1 \right) dx = \left( x^2 + 1 \right) dy\]
\[ \Rightarrow \frac{1}{x^2 + 1}dx = \frac{1}{y^2 + 1}dy\]
Integrating both sides, we get
\[\int\frac{1}{x^2 + 1}dx = \int\frac{1}{y^2 + 1}dy\]
\[ \Rightarrow \tan^{- 1} x = \tan^{- 1} y + C\]
\[ \Rightarrow \tan^{- 1} x - \tan^{- 1} y = C\]
\[\text{ Hence, } \tan^{- 1} x - \tan^{- 1} y = \text{ C is the required solution .}\]

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 22: Differential Equations - Exercise 22.07 [पृष्ठ ५५]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 22 Differential Equations
Exercise 22.07 | Q 31 | पृष्ठ ५५

व्हिडिओ ट्यूटोरियलVIEW ALL [2]

संबंधित प्रश्‍न

\[\sqrt{1 + \left( \frac{dy}{dx} \right)^2} = \left( c\frac{d^2 y}{d x^2} \right)^{1/3}\]

\[\frac{d^4 y}{d x^4} = \left\{ c + \left( \frac{dy}{dx} \right)^2 \right\}^{3/2}\]

Show that y = ax3 + bx2 + c is a solution of the differential equation \[\frac{d^3 y}{d x^3} = 6a\].

 


Show that y = e−x + ax + b is solution of the differential equation\[e^x \frac{d^2 y}{d x^2} = 1\]

 


Differential equation \[\frac{dy}{dx} = y, y\left( 0 \right) = 1\]
Function y = ex


\[\frac{dy}{dx} = x^2 + x - \frac{1}{x}, x \neq 0\]

\[\frac{dy}{dx} = x^5 \tan^{- 1} \left( x^3 \right)\]

\[\frac{dy}{dx} = x \log x\]

\[\frac{dy}{dx} + \frac{1 + y^2}{y} = 0\]

\[\frac{dy}{dx} = \frac{1 + y^2}{y^3}\]

\[\left( x - 1 \right)\frac{dy}{dx} = 2 x^3 y\]

x cos y dy = (xex log x + ex) dx


\[\frac{dy}{dx} = \frac{x e^x \log x + e^x}{x \cos y}\]

\[y\sqrt{1 + x^2} + x\sqrt{1 + y^2}\frac{dy}{dx} = 0\]

(1 + x) (1 + y2) dx + (1 + y) (1 + x2) dy = 0


tan y \[\frac{dy}{dx}\] = sin (x + y) + sin (x − y) 

 


\[\frac{dy}{dx} = \frac{\left( x - y \right) + 3}{2\left( x - y \right) + 5}\]

\[\cos^2 \left( x - 2y \right) = 1 - 2\frac{dy}{dx}\]

(x + y) (dx − dy) = dx + dy


\[\frac{dy}{dx} = \frac{y^2 - x^2}{2xy}\]

\[\left[ x\sqrt{x^2 + y^2} - y^2 \right] dx + xy\ dy = 0\]

Solve the following initial value problem:-
\[x\frac{dy}{dx} - y = \log x, y\left( 1 \right) = 0\]


In a culture, the bacteria count is 100000. The number is increased by 10% in 2 hours. In how many hours will the count reach 200000, if the rate of growth of bacteria is proportional to the number present?


The population of a city increases at a rate proportional to the number of inhabitants present at any time t. If the population of the city was 200000 in 1990 and 250000 in 2000, what will be the population in 2010?


Find the equation of the curve such that the portion of the x-axis cut off between the origin and the tangent at a point is twice the abscissa and which passes through the point (1, 2).


Find the equation to the curve satisfying x (x + 1) \[\frac{dy}{dx} - y\]  = x (x + 1) and passing through (1, 0).


The x-intercept of the tangent line to a curve is equal to the ordinate of the point of contact. Find the particular curve through the point (1, 1).


The differential equation obtained on eliminating A and B from y = A cos ωt + B sin ωt, is


The equation of the curve whose slope is given by \[\frac{dy}{dx} = \frac{2y}{x}; x > 0, y > 0\] and which passes through the point (1, 1) is


Choose the correct option from the given alternatives:

The differential equation `"y" "dy"/"dx" + "x" = 0` represents family of


Solve the following differential equation.

`(dθ)/dt  = − k (θ − θ_0)`


Solve the following differential equation.

xdx + 2y dx = 0


Solve the following differential equation.

x2y dx − (x3 + y3 ) dy = 0


Solve the following differential equation.

y dx + (x - y2 ) dy = 0


Solve the differential equation sec2y tan x dy + sec2x tan y dx = 0


Solve the differential equation (x2 – yx2)dy + (y2 + xy2)dx = 0


State whether the following statement is True or False:

The integrating factor of the differential equation `("d"y)/("d"x) - y` = x is e–x 


Solve: `("d"y)/("d"x) = cos(x + y) + sin(x + y)`. [Hint: Substitute x + y = z]


Solution of `x("d"y)/("d"x) = y + x tan  y/x` is `sin(y/x)` = cx


The value of `dy/dx` if y = |x – 1| + |x – 4| at x = 3 is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×