मराठी

Solve: dddydx=cos(x+y)+sin(x+y). [Hint: Substitute x + y = z] - Mathematics

Advertisements
Advertisements

प्रश्न

Solve: `("d"y)/("d"x) = cos(x + y) + sin(x + y)`. [Hint: Substitute x + y = z]

बेरीज

उत्तर

Given that: `("d"y)/("d"x) = cos(x + y) + sin(x + y)`

Put x + y = v, on differentiating w.r.t. x, we get,

`1 + ("d"y)/("d"x) = "dv"/"dx"`

∴ `("d"y)/("d"x) = "dv"/"dx" - 1`

∴ `"dv"/"dx" - 1` = cos v + sin v

⇒ `"dv"/"dx"` = cos v + sin v + 1

⇒ `"dv"/(cos"v" + sin"v" + 1)` = dx

Integrating both sides, we have

`int "dv"/(cos"v" + sin"v" + 1) = int 1 . "d"x`

⇒ `int  "dv"/(((1 - tan^2  "v"/2)/(1 + tan^2  "v"/2) + (2tan  "v"/2)/(1 + tan^2  "v"/2) + 1)) = int 1. "d"x`

⇒ `int ((1 + tan^2  "v"/2))/(1 - tan^2  "v"/2 + 2 tan  "v"/2 + 1 + tan^2  "v"/2) "dv" = int 1."d"x`

⇒ `int (sec^2  "v"/2)/(2 + 2 tan  "v"/2) "dv" = int 1."d"x`

Put `2 + 2 tan  "v"/2` = t

`2 * 1/2 sec^2  "v"/2 "dv"` = dt

⇒ `sec^2  "v"/2 "dv"` = dt

⇒ `int "dt"/"t" = int 1."d"x`

⇒ `log|"t"|` = x + c

⇒ `log|2 + 2 tan  "v"/2|` = x + c

⇒ `log|2 + 2tan((x + y)/2)| ` = x + c

⇒ `log2 [1 + tan((x + y)/2)]` = x + c

⇒ `log2 + log[1 + tan ((x + y)/2)]` = x + c

⇒ `log[1 + tan((x + y)/2)]` = x + c – log 2

Hence, the required solution is `log[1 + tan((x + y)/2)]` = x + K  ....[c – log 2 = K]

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 9: Differential Equations - Exercise [पृष्ठ १९४]

APPEARS IN

एनसीईआरटी एक्झांप्लर Mathematics [English] Class 12
पाठ 9 Differential Equations
Exercise | Q 27 | पृष्ठ १९४

व्हिडिओ ट्यूटोरियलVIEW ALL [2]

संबंधित प्रश्‍न

Solve the equation for x: `sin^(-1)  5/x + sin^(-1)  12/x = pi/2, x != 0`


\[\frac{d^2 y}{d x^2} + 4y = 0\]

Verify that y = 4 sin 3x is a solution of the differential equation \[\frac{d^2 y}{d x^2} + 9y = 0\]


Show that y = e−x + ax + b is solution of the differential equation\[e^x \frac{d^2 y}{d x^2} = 1\]

 


\[\frac{dy}{dx} = x^2 + x - \frac{1}{x}, x \neq 0\]

xy dy = (y − 1) (x + 1) dx


\[\frac{dy}{dx} = \frac{x e^x \log x + e^x}{x \cos y}\]

\[\frac{dy}{dx} + \frac{\cos x \sin y}{\cos y} = 0\]

\[\frac{dy}{dx} = 2 e^{2x} y^2 , y\left( 0 \right) = - 1\]

\[\left( x + y + 1 \right)\frac{dy}{dx} = 1\]

\[\frac{dy}{dx} = \frac{y^2 - x^2}{2xy}\]

\[\frac{dy}{dx} = \frac{x + y}{x - y}\]

\[xy\frac{dy}{dx} = x^2 - y^2\]

Solve the following initial value problem:-

\[\frac{dy}{dx} + 2y = e^{- 2x} \sin x, y\left( 0 \right) = 0\]


Solve the following initial value problem:-

\[\left( 1 + y^2 \right) dx + \left( x - e^{- \tan^{- 1} y} \right) dx = 0, y\left( 0 \right) = 0\]


Solve the following initial value problem:-

\[\frac{dy}{dx} + 2y \tan x = \sin x; y = 0\text{ when }x = \frac{\pi}{3}\]


If the marginal cost of manufacturing a certain item is given by C' (x) = \[\frac{dC}{dx}\] = 2 + 0.15 x. Find the total cost function C (x), given that C (0) = 100.

 

Show that all curves for which the slope at any point (x, y) on it is \[\frac{x^2 + y^2}{2xy}\]  are rectangular hyperbola.


Write the differential equation obtained eliminating the arbitrary constant C in the equation xy = C2.


Verify that the function y = e−3x is a solution of the differential equation \[\frac{d^2 y}{d x^2} + \frac{dy}{dx} - 6y = 0.\]


In the following verify that the given functions (explicit or implicit) is a solution of the corresponding differential equation:-

y = ex + 1            y'' − y' = 0


In each of the following examples, verify that the given function is a solution of the corresponding differential equation.

Solution D.E.
y = ex  `dy/ dx= y`

Determine the order and degree of the following differential equations.

Solution D.E.
ax2 + by2 = 5 `xy(d^2y)/dx^2+ x(dy/dx)^2 = y dy/dx`

Solve the following differential equation.

`dy/dx + y` = 3


A solution of a differential equation which can be obtained from the general solution by giving particular values to the arbitrary constants is called ___________ solution.


x2y dx – (x3 + y3) dy = 0


Solve the following differential equation y log y = `(log  y - x) ("d"y)/("d"x)`


Integrating factor of the differential equation `"dy"/"dx" - y` = cos x is ex.


Solve the differential equation `"dy"/"dx"` = 1 + x + y2 + xy2, when y = 0, x = 0.


If `y = log_2 log_2(x)` then `(dy)/(dx)` =


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×