Advertisements
Advertisements
प्रश्न
Solve: `("d"y)/("d"x) = cos(x + y) + sin(x + y)`. [Hint: Substitute x + y = z]
उत्तर
Given that: `("d"y)/("d"x) = cos(x + y) + sin(x + y)`
Put x + y = v, on differentiating w.r.t. x, we get,
`1 + ("d"y)/("d"x) = "dv"/"dx"`
∴ `("d"y)/("d"x) = "dv"/"dx" - 1`
∴ `"dv"/"dx" - 1` = cos v + sin v
⇒ `"dv"/"dx"` = cos v + sin v + 1
⇒ `"dv"/(cos"v" + sin"v" + 1)` = dx
Integrating both sides, we have
`int "dv"/(cos"v" + sin"v" + 1) = int 1 . "d"x`
⇒ `int "dv"/(((1 - tan^2 "v"/2)/(1 + tan^2 "v"/2) + (2tan "v"/2)/(1 + tan^2 "v"/2) + 1)) = int 1. "d"x`
⇒ `int ((1 + tan^2 "v"/2))/(1 - tan^2 "v"/2 + 2 tan "v"/2 + 1 + tan^2 "v"/2) "dv" = int 1."d"x`
⇒ `int (sec^2 "v"/2)/(2 + 2 tan "v"/2) "dv" = int 1."d"x`
Put `2 + 2 tan "v"/2` = t
`2 * 1/2 sec^2 "v"/2 "dv"` = dt
⇒ `sec^2 "v"/2 "dv"` = dt
⇒ `int "dt"/"t" = int 1."d"x`
⇒ `log|"t"|` = x + c
⇒ `log|2 + 2 tan "v"/2|` = x + c
⇒ `log|2 + 2tan((x + y)/2)| ` = x + c
⇒ `log2 [1 + tan((x + y)/2)]` = x + c
⇒ `log2 + log[1 + tan ((x + y)/2)]` = x + c
⇒ `log[1 + tan((x + y)/2)]` = x + c – log 2
Hence, the required solution is `log[1 + tan((x + y)/2)]` = x + K ....[c – log 2 = K]
APPEARS IN
संबंधित प्रश्न
Solve the equation for x: `sin^(-1) 5/x + sin^(-1) 12/x = pi/2, x != 0`
Verify that y = 4 sin 3x is a solution of the differential equation \[\frac{d^2 y}{d x^2} + 9y = 0\]
Show that y = e−x + ax + b is solution of the differential equation\[e^x \frac{d^2 y}{d x^2} = 1\]
xy dy = (y − 1) (x + 1) dx
Solve the following initial value problem:-
\[\frac{dy}{dx} + 2y = e^{- 2x} \sin x, y\left( 0 \right) = 0\]
Solve the following initial value problem:-
\[\left( 1 + y^2 \right) dx + \left( x - e^{- \tan^{- 1} y} \right) dx = 0, y\left( 0 \right) = 0\]
Solve the following initial value problem:-
\[\frac{dy}{dx} + 2y \tan x = \sin x; y = 0\text{ when }x = \frac{\pi}{3}\]
If the marginal cost of manufacturing a certain item is given by C' (x) = \[\frac{dC}{dx}\] = 2 + 0.15 x. Find the total cost function C (x), given that C (0) = 100.
Show that all curves for which the slope at any point (x, y) on it is \[\frac{x^2 + y^2}{2xy}\] are rectangular hyperbola.
Write the differential equation obtained eliminating the arbitrary constant C in the equation xy = C2.
Verify that the function y = e−3x is a solution of the differential equation \[\frac{d^2 y}{d x^2} + \frac{dy}{dx} - 6y = 0.\]
In the following verify that the given functions (explicit or implicit) is a solution of the corresponding differential equation:-
y = ex + 1 y'' − y' = 0
In each of the following examples, verify that the given function is a solution of the corresponding differential equation.
Solution | D.E. |
y = ex | `dy/ dx= y` |
Determine the order and degree of the following differential equations.
Solution | D.E. |
ax2 + by2 = 5 | `xy(d^2y)/dx^2+ x(dy/dx)^2 = y dy/dx` |
Solve the following differential equation.
`dy/dx + y` = 3
A solution of a differential equation which can be obtained from the general solution by giving particular values to the arbitrary constants is called ___________ solution.
x2y dx – (x3 + y3) dy = 0
Solve the following differential equation y log y = `(log y - x) ("d"y)/("d"x)`
Integrating factor of the differential equation `"dy"/"dx" - y` = cos x is ex.
Solve the differential equation `"dy"/"dx"` = 1 + x + y2 + xy2, when y = 0, x = 0.
If `y = log_2 log_2(x)` then `(dy)/(dx)` =