Advertisements
Advertisements
प्रश्न
उत्तर
We have,
\[xy\frac{dy}{dx} = x^2 - y^2 \]
\[ \Rightarrow \frac{dy}{dx} = \frac{x^2 - y^2}{xy}\]
This is a homogeneous differential equation .
\[\text{ Putting }y = vx\text{ and }\frac{dy}{dx} = v + x\frac{dv}{dx},\text{ we get }\]
\[v + x\frac{dv}{dx} = \frac{x^2 - v^2 x^2}{v x^2}\]
\[ \Rightarrow v + x\frac{dv}{dx} = \frac{1 - v^2}{v}\]
\[ \Rightarrow x\frac{dv}{dx} = \frac{1 - v^2}{v} - v\]
\[ \Rightarrow x\frac{dv}{dx} = \frac{1 - 2 v^2}{v}\]
\[ \Rightarrow \frac{v}{1 - 2 v^2}dv = \frac{1}{x}dx\]
Integrating both sides, we get
\[\int\frac{v}{1 - 2 v^2}dv = \int\frac{1}{x}dx\]
\[ \Rightarrow \frac{- 1}{4}\log \left| 1 - 2 v^2 \right| = \log \left| x \right| + \log C\]
\[ \Rightarrow \log \left| 1 - 2 v^2 \right| = - 4\log \left| x \right| - 4 \log C\]
\[ \Rightarrow \log \left| \left( 1 - 2 v^2 \right)\left( x^4 \right) \right| = \log \frac{1}{C^4}\]
\[\text{ Putting }v = \frac{y}{x},\text{ we get }\]
\[ \Rightarrow \log \left| x^2 \left( x^2 - 2 y^2 \right) \right| = \log \frac{1}{C^4}\]
\[ \Rightarrow x^2 \left( x^2 - 2 y^2 \right) = C_1 \]
where
\[ C_1 = \frac{1}{C^4}\]
\[\text{ Hence, } x^2 \left( x^2 - 2 y^2 \right) = C_1\text{ is the required solution }.\]
APPEARS IN
संबंधित प्रश्न
If 1, `omega` and `omega^2` are the cube roots of unity, prove `(a + b omega + c omega^2)/(c + s omega + b omega^2) = omega^2`
Verify that \[y = ce^{tan^{- 1}} x\] is a solution of the differential equation \[\left( 1 + x^2 \right)\frac{d^2 y}{d x^2} + \left( 2x - 1 \right)\frac{dy}{dx} = 0\]
Differential equation \[\frac{d^2 y}{d x^2} - y = 0, y \left( 0 \right) = 2, y' \left( 0 \right) = 0\] Function y = ex + e−x
tan y dx + sec2 y tan x dy = 0
Solve the following differential equation:
\[y\left( 1 - x^2 \right)\frac{dy}{dx} = x\left( 1 + y^2 \right)\]
Solve the following differential equation:
\[\left( 1 + y^2 \right) \tan^{- 1} xdx + 2y\left( 1 + x^2 \right)dy = 0\]
Solve the following initial value problem:-
\[x\frac{dy}{dx} - y = \left( x + 1 \right) e^{- x} , y\left( 1 \right) = 0\]
Solve the following initial value problem:-
\[\left( 1 + y^2 \right) dx + \left( x - e^{- \tan^{- 1} y} \right) dx = 0, y\left( 0 \right) = 0\]
Solve the following initial value problem:-
\[\tan x\left( \frac{dy}{dx} \right) = 2x\tan x + x^2 - y; \tan x \neq 0\] given that y = 0 when \[x = \frac{\pi}{2}\]
If the marginal cost of manufacturing a certain item is given by C' (x) = \[\frac{dC}{dx}\] = 2 + 0.15 x. Find the total cost function C (x), given that C (0) = 100.
Find the curve for which the intercept cut-off by a tangent on x-axis is equal to four times the ordinate of the point of contact.
Which of the following transformations reduce the differential equation \[\frac{dz}{dx} + \frac{z}{x}\log z = \frac{z}{x^2} \left( \log z \right)^2\] into the form \[\frac{du}{dx} + P\left( x \right) u = Q\left( x \right)\]
Form the differential equation representing the family of parabolas having vertex at origin and axis along positive direction of x-axis.
Form the differential equation of the family of parabolas having vertex at origin and axis along positive y-axis.
Find the coordinates of the centre, foci and equation of directrix of the hyperbola x2 – 3y2 – 4x = 8.
Solve the differential equation:
`"x"("dy")/("dx")+"y"=3"x"^2-2`
Solve the following differential equation.
`dy /dx +(x-2 y)/ (2x- y)= 0`
Select and write the correct alternative from the given option for the question
Differential equation of the function c + 4yx = 0 is
Solve: `("d"y)/("d"x) + 2/xy` = x2
Solve the following differential equation y log y = `(log y - x) ("d"y)/("d"x)`
Solve `x^2 "dy"/"dx" - xy = 1 + cos(y/x)`, x ≠ 0 and x = 1, y = `pi/2`
The differential equation (1 + y2)x dx – (1 + x2)y dy = 0 represents a family of:
Solve the differential equation `dy/dx + xy = xy^2` and find the particular solution when y = 4, x = 1.