Advertisements
Advertisements
प्रश्न
उत्तर
We have,
\[\frac{dy}{dx} = e^{x + y} + e^{- x + y} \]
\[ \Rightarrow \frac{dy}{dx} = e^y \left( e^x + e^{- x} \right)\]
\[ \Rightarrow e^{- y} dy = \left( e^x + e^{- x} \right) dx\]
Integrating both sides, we get
\[\int e^{- y} dy = \int\left( e^x + e^{- x} \right) dx\]
\[ \Rightarrow - e^{- y} = e^x - e^{- x} + C\]
\[ \Rightarrow e^{- x} - e^{- y} = e^x + C\]
\[\text{ Hence, } e^{- x} - e^{- y} = e^x + C\text{ is the required solution.} \]
APPEARS IN
संबंधित प्रश्न
Form the differential equation representing the family of ellipses having centre at the origin and foci on x-axis.
Show that the differential equation of which \[y = 2\left( x^2 - 1 \right) + c e^{- x^2}\] is a solution is \[\frac{dy}{dx} + 2xy = 4 x^3\]
Show that y = e−x + ax + b is solution of the differential equation\[e^x \frac{d^2 y}{d x^2} = 1\]
Differential equation \[\frac{d^2 y}{d x^2} - \frac{dy}{dx} = 0, y \left( 0 \right) = 2, y'\left( 0 \right) = 1\]
Function y = ex + 1
(ey + 1) cos x dx + ey sin x dy = 0
xy dy = (y − 1) (x + 1) dx
(1 − x2) dy + xy dx = xy2 dx
(y2 + 1) dx − (x2 + 1) dy = 0
Find the particular solution of edy/dx = x + 1, given that y = 3, when x = 0.
x2 dy + y (x + y) dx = 0
3x2 dy = (3xy + y2) dx
The surface area of a balloon being inflated, changes at a rate proportional to time t. If initially its radius is 1 unit and after 3 seconds it is 2 units, find the radius after time t.
The population of a city increases at a rate proportional to the number of inhabitants present at any time t. If the population of the city was 200000 in 1990 and 250000 in 2000, what will be the population in 2010?
Find the curve for which the intercept cut-off by a tangent on x-axis is equal to four times the ordinate of the point of contact.
Find the equation of the curve such that the portion of the x-axis cut off between the origin and the tangent at a point is twice the abscissa and which passes through the point (1, 2).
Find the equation to the curve satisfying x (x + 1) \[\frac{dy}{dx} - y\] = x (x + 1) and passing through (1, 0).
The x-intercept of the tangent line to a curve is equal to the ordinate of the point of contact. Find the particular curve through the point (1, 1).
Write the differential equation obtained eliminating the arbitrary constant C in the equation xy = C2.
Which of the following differential equations has y = C1 ex + C2 e−x as the general solution?
Determine the order and degree of the following differential equations.
Solution | D.E |
y = aex + be−x | `(d^2y)/dx^2= 1` |
Find the differential equation whose general solution is
x3 + y3 = 35ax.
Solve the following differential equation.
`y^3 - dy/dx = x dy/dx`
Solve the following differential equation.
x2y dx − (x3 + y3 ) dy = 0
Solve the following differential equation.
`xy dy/dx = x^2 + 2y^2`
Solve the following differential equation.
`dy/dx + y` = 3
The solution of `dy/ dx` = 1 is ______
Choose the correct alternative.
The integrating factor of `dy/dx - y = e^x `is ex, then its solution is
For the differential equation, find the particular solution
`("d"y)/("d"x)` = (4x +y + 1), when y = 1, x = 0
Find the particular solution of the following differential equation
`("d"y)/("d"x)` = e2y cos x, when x = `pi/6`, y = 0.
Solution: The given D.E. is `("d"y)/("d"x)` = e2y cos x
∴ `1/"e"^(2y) "d"y` = cos x dx
Integrating, we get
`int square "d"y` = cos x dx
∴ `("e"^(-2y))/(-2)` = sin x + c1
∴ e–2y = – 2sin x – 2c1
∴ `square` = c, where c = – 2c1
This is general solution.
When x = `pi/6`, y = 0, we have
`"e"^0 + 2sin pi/6` = c
∴ c = `square`
∴ particular solution is `square`
Given that `"dy"/"dx" = "e"^-2x` and y = 0 when x = 5. Find the value of x when y = 3.