Advertisements
Advertisements
प्रश्न
Differential equation \[\frac{d^2 y}{d x^2} - \frac{dy}{dx} = 0, y \left( 0 \right) = 2, y'\left( 0 \right) = 1\]
Function y = ex + 1
उत्तर
We have,
\[y = e^x + 1...........(1)\]
Differentiating both sides of (1) with respect to X, we get
\[\frac{dy}{dx} = e^x............(2)\]
Differentiating both sides of (2) with respect to X, we get
\[\frac{d^2 y}{d x^2} = e^x \]
\[ \Rightarrow \frac{d^2 y}{d x^2} = \frac{dy}{dx} ..........\left[ \text{Using (2)}\right]\]
\[ \Rightarrow \frac{d^2 y}{d x^2} - \frac{dy}{dx} = 0 \]
It is the given differential equation.
\[y = e^x + 1\] satisfies the given differential equation; hence, it is a solution.
Also, when \[x = 0, y = e^0 + 1 = 1 + 1 = 2,\text{ i.e. }y(0) = 2\]
And, when \[x = 0, y' = e^0 = 1,\text{ i.e. }y'(0) = 1\]
Hence, \[y = e^x + 1\] is the solution to the given initial value problem.
APPEARS IN
संबंधित प्रश्न
Show that the function y = A cos x + B sin x is a solution of the differential equation \[\frac{d^2 y}{d x^2} + y = 0\]
Show that y = ex (A cos x + B sin x) is the solution of the differential equation \[\frac{d^2 y}{d x^2} - 2\frac{dy}{dx} + 2y = 0\]
For the following differential equation verify that the accompanying function is a solution:
Differential equation | Function |
\[x\frac{dy}{dx} + y = y^2\]
|
\[y = \frac{a}{x + a}\]
|
For the following differential equation verify that the accompanying function is a solution:
Differential equation | Function |
\[x^3 \frac{d^2 y}{d x^2} = 1\]
|
\[y = ax + b + \frac{1}{2x}\]
|
Differential equation \[\frac{dy}{dx} + y = 2, y \left( 0 \right) = 3\] Function y = e−x + 2
(sin x + cos x) dy + (cos x − sin x) dx = 0
(1 − x2) dy + xy dx = xy2 dx
y (1 + ex) dy = (y + 1) ex dx
In a bank principal increases at the rate of 5% per year. An amount of Rs 1000 is deposited with this bank, how much will it worth after 10 years (e0.5 = 1.648).
In a culture the bacteria count is 100000. The number is increased by 10% in 2 hours. In how many hours will the count reach 200000, if the rate of growth of bacteria is proportional to the number present.
x2 dy + y (x + y) dx = 0
\[x^2 \frac{dy}{dx} = x^2 + xy + y^2 \]
Solve the following differential equations:
\[\frac{dy}{dx} = \frac{y}{x}\left\{ \log y - \log x + 1 \right\}\]
Solve the following initial value problem:-
\[\frac{dy}{dx} - 3y \cot x = \sin 2x; y = 2\text{ when }x = \frac{\pi}{2}\]
Experiments show that radium disintegrates at a rate proportional to the amount of radium present at the moment. Its half-life is 1590 years. What percentage will disappear in one year?
The slope of the tangent at a point P (x, y) on a curve is \[\frac{- x}{y}\]. If the curve passes through the point (3, −4), find the equation of the curve.
A curve is such that the length of the perpendicular from the origin on the tangent at any point P of the curve is equal to the abscissa of P. Prove that the differential equation of the curve is \[y^2 - 2xy\frac{dy}{dx} - x^2 = 0\], and hence find the curve.
The slope of a curve at each of its points is equal to the square of the abscissa of the point. Find the particular curve through the point (−1, 1).
The integrating factor of the differential equation (x log x)
\[\frac{dy}{dx} + y = 2 \log x\], is given by
If xmyn = (x + y)m+n, prove that \[\frac{dy}{dx} = \frac{y}{x} .\]
The price of six different commodities for years 2009 and year 2011 are as follows:
Commodities | A | B | C | D | E | F |
Price in 2009 (₹) |
35 | 80 | 25 | 30 | 80 | x |
Price in 2011 (₹) | 50 | y | 45 | 70 | 120 | 105 |
The Index number for the year 2011 taking 2009 as the base year for the above data was calculated to be 125. Find the values of x andy if the total price in 2009 is ₹ 360.
In the following example, verify that the given function is a solution of the corresponding differential equation.
Solution | D.E. |
y = xn | `x^2(d^2y)/dx^2 - n xx (xdy)/dx + ny =0` |
Solve the following differential equation.
y2 dx + (xy + x2 ) dy = 0
Integrating factor of the differential equation `"dy"/"dx" - y` = cos x is ex.
Solution of `x("d"y)/("d"x) = y + x tan y/x` is `sin(y/x)` = cx