Advertisements
Advertisements
प्रश्न
A curve is such that the length of the perpendicular from the origin on the tangent at any point P of the curve is equal to the abscissa of P. Prove that the differential equation of the curve is \[y^2 - 2xy\frac{dy}{dx} - x^2 = 0\], and hence find the curve.
उत्तर
Tangent at P(x, y) is given by \[Y - y = \frac{dy}{dx}(X - x)\]
If p be the perpendicular from the origin, then
\[p = \frac{x\frac{dy}{dx} - y}{\sqrt{\left[ 1 + \left( \frac{dy}{dx} \right)^2 \right]}} = x ............\left(\text{given}\right)\]
\[\Rightarrow x^2 \left( \frac{dy}{dx} \right)^2 - 2xy\frac{dy}{dx} + y^2 = x^2 + x^2 \left( \frac{dy}{dx} \right)^2 \]
\[ \Rightarrow y^2 - 2xy\frac{dy}{dx} - x^2 = 0 \]
Hence proved.
\[\text{ Now, }y^2 - 2xy\frac{dy}{dx} - x^2 = 0 \Rightarrow \frac{dy}{dx} = \frac{y^2 - x^2}{2xy}\]
\[ \Rightarrow 2xy\frac{dy}{dx} - y^2 = - x^2 \]
\[ \Rightarrow 2y\frac{dy}{dx} - \frac{y^2}{x} = - x^{} \]
\[\text{ Let }y^2 = v\]
\[ \Rightarrow \frac{dv}{dx} - \frac{v}{x} = - x \]
Multiplying by the integrating factor \[e^{\int - \frac{1}{x}dx} = \frac{1}{x}\]
\[v . \frac{1}{x} = \int - x . \frac{1}{x}dx + c = - x + c\]
\[ \Rightarrow \frac{y^2}{x^2} = - x + c\]
\[ \Rightarrow x^2 + y^2 = cx\]
APPEARS IN
संबंधित प्रश्न
Verify that y = \[\frac{a}{x} + b\] is a solution of the differential equation
\[\frac{d^2 y}{d x^2} + \frac{2}{x}\left( \frac{dy}{dx} \right) = 0\]
Show that y = ax3 + bx2 + c is a solution of the differential equation \[\frac{d^3 y}{d x^3} = 6a\].
Show that y = e−x + ax + b is solution of the differential equation\[e^x \frac{d^2 y}{d x^2} = 1\]
(sin x + cos x) dy + (cos x − sin x) dx = 0
(1 + x2) dy = xy dx
x cos2 y dx = y cos2 x dy
(y + xy) dx + (x − xy2) dy = 0
dy + (x + 1) (y + 1) dx = 0
Solve the following differential equation:
\[\left( 1 + y^2 \right) \tan^{- 1} xdx + 2y\left( 1 + x^2 \right)dy = 0\]
If y(x) is a solution of the different equation \[\left( \frac{2 + \sin x}{1 + y} \right)\frac{dy}{dx} = - \cos x\] and y(0) = 1, then find the value of y(π/2).
(y2 − 2xy) dx = (x2 − 2xy) dy
Solve the following initial value problem:
\[x\frac{dy}{dx} + y = x \cos x + \sin x, y\left( \frac{\pi}{2} \right) = 1\]
Find the equation of the curve passing through the point (0, 1) if the slope of the tangent to the curve at each of its point is equal to the sum of the abscissa and the product of the abscissa and the ordinate of the point.
Write the differential equation representing the family of straight lines y = Cx + 5, where C is an arbitrary constant.
Write the differential equation obtained eliminating the arbitrary constant C in the equation xy = C2.
Integrating factor of the differential equation cos \[x\frac{dy}{dx} + y\] sin x = 1, is
The equation of the curve whose slope is given by \[\frac{dy}{dx} = \frac{2y}{x}; x > 0, y > 0\] and which passes through the point (1, 1) is
The solution of the differential equation \[\frac{dy}{dx} - \frac{y\left( x + 1 \right)}{x} = 0\] is given by
Which of the following transformations reduce the differential equation \[\frac{dz}{dx} + \frac{z}{x}\log z = \frac{z}{x^2} \left( \log z \right)^2\] into the form \[\frac{du}{dx} + P\left( x \right) u = Q\left( x \right)\]
Form the differential equation representing the family of curves y = a sin (x + b), where a, b are arbitrary constant.
If a + ib = `("x" + "iy")/("x" - "iy"),` prove that `"a"^2 +"b"^2 = 1` and `"b"/"a" = (2"xy")/("x"^2 - "y"^2)`
Solve the following differential equation.
`dy/dx = x^2 y + y`
Solve the following differential equation.
`dy /dx +(x-2 y)/ (2x- y)= 0`
Solve the following differential equation.
(x2 − y2 ) dx + 2xy dy = 0
Solve the following differential equation.
`x^2 dy/dx = x^2 +xy - y^2`
Choose the correct alternative.
The differential equation of y = `k_1 + k_2/x` is
y2 dx + (xy + x2)dy = 0
x2y dx – (x3 + y3) dy = 0
The value of `dy/dx` if y = |x – 1| + |x – 4| at x = 3 is ______.