Advertisements
Advertisements
प्रश्न
Solve the following differential equation.
`dy /dx +(x-2 y)/ (2x- y)= 0`
उत्तर
`dy /dx +(x-2 y)/ (2x- y)= 0` ....(i)
Put y = tx ...(ii)
Differentiating w.r.t. x, we get
`dy/dx = t + x dt/dx `...(iii)
Substituting (ii) and (iii) in (i), we get
`t + x dt/dx + (x-2tx)/(2x-tx) = 0`
∴`x dt/dx +t + (1-2t)/2-t = 0`
∴`x dt/dx + (2t - t^2+1-2t)/2-t = 0`
∴`x dt/dx + (1-t^2)/(2-t )= 0`
∴ `x dt/dx = - (1-t^2)/(2-t )`
∴ = `(2-t)/(1-t^2)dt = dx/x`
∴ `(2-t)/(t^2-1)dt = dx/x`
Integrating on both sides, we get
`int (2-t)/(t^2-1) dt = int dx/x`
∴ `int (2-t)/((t+1)(t-1)) dt = int dx/x`
Let `2-t/((t+1)(t-1)) = A/(t+1)+ B/(t-1)`
∴ 2 - t = A(t -1) + B(t + 1)
Putting t = 1, we get
∴ 2 -1 = A(1 -1) + B(1 + 1)
∴ B = `1 /2`
Putting t = -1, we get
2 -(-1) = A(-1 -1) + B(-1 + 1)
∴ A = `(-3)/2`
∴ `int(-3/2)/(t+1)dt +int(1/2)/(t-1) dt = intdx/x`
∴`(-3)/2 int 1/(t+1)dt + 1/2int 1/(t-1) dt = int dx/x`
∴`(-3)/2 log|t+1| + 1/2 log |t-1| = log |x| + log |c_1|`
∴ `-3 log |(y+x)/x| + log|(y-x)/x| = 2log |x| + 2 log |c_1|`
∴ -3 log |y+x| + 3 log |x| + log | y -x| - log |x|
= 2 log |x| + 2 log |c1|
∴ log |y - x| = 3 log |y+x|+ 2 log |c1|
∴ log |y- x |= log |( y+ x )3|+ log | c12|
∴ log | y - x| = log | c12 ( x+y)3|
∴ (y - x) = c(x + y) 3 … |c12 c|
Notes
Answer given in the textbook is `log |(x+y)/(x-y)| - 1/2 log | x^2 - y^2| + 2 log x = log c.`
However, as per our calculation it is ‘(y -x) = c(x+y)3.
APPEARS IN
संबंधित प्रश्न
xy (y + 1) dy = (x2 + 1) dx
y (1 + ex) dy = (y + 1) ex dx
y ex/y dx = (xex/y + y) dy
Solve the following initial value problem:
\[\frac{dy}{dx} + y \cot x = 4x\text{ cosec }x, y\left( \frac{\pi}{2} \right) = 0\]
Find the equation of the curve such that the portion of the x-axis cut off between the origin and the tangent at a point is twice the abscissa and which passes through the point (1, 2).
Solve the following differential equation.
`dy/dx = x^2 y + y`
`xy dy/dx = x^2 + 2y^2`
Choose the correct alternative:
Differential equation of the function c + 4yx = 0 is
State whether the following statement is True or False:
The integrating factor of the differential equation `("d"y)/("d"x) - y` = x is e–x
The function y = cx is the solution of differential equation `("d"y)/("d"x) = y/x`
Solve the following differential equation `("d"y)/("d"x)` = x2y + y
Find the particular solution of the following differential equation
`("d"y)/("d"x)` = e2y cos x, when x = `pi/6`, y = 0.
Solution: The given D.E. is `("d"y)/("d"x)` = e2y cos x
∴ `1/"e"^(2y) "d"y` = cos x dx
Integrating, we get
`int square "d"y` = cos x dx
∴ `("e"^(-2y))/(-2)` = sin x + c1
∴ e–2y = – 2sin x – 2c1
∴ `square` = c, where c = – 2c1
This is general solution.
When x = `pi/6`, y = 0, we have
`"e"^0 + 2sin pi/6` = c
∴ c = `square`
∴ particular solution is `square`
Solve `x^2 "dy"/"dx" - xy = 1 + cos(y/x)`, x ≠ 0 and x = 1, y = `pi/2`