मराठी
महाराष्ट्र राज्य शिक्षण मंडळएचएससी वाणिज्य (इंग्रजी माध्यम) इयत्ता १२ वी

Solve the following differential equation. dydx+x-2y2x-y=0 - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

Solve the following differential equation.

`dy /dx +(x-2 y)/ (2x- y)= 0`

बेरीज

उत्तर

`dy /dx +(x-2 y)/ (2x- y)= 0` ....(i)

Put y = tx ...(ii)

Differentiating w.r.t. x, we get

`dy/dx = t + x dt/dx `...(iii)

Substituting (ii) and (iii) in (i), we get

`t + x dt/dx + (x-2tx)/(2x-tx) = 0`

∴`x dt/dx +t + (1-2t)/2-t = 0`

∴`x dt/dx  + (2t - t^2+1-2t)/2-t = 0`

∴`x dt/dx  + (1-t^2)/(2-t )= 0`

∴ `x dt/dx  = - (1-t^2)/(2-t )`

∴ = `(2-t)/(1-t^2)dt = dx/x`

∴  `(2-t)/(t^2-1)dt = dx/x`

Integrating on both sides, we get

`int (2-t)/(t^2-1) dt = int dx/x`

∴  `int (2-t)/((t+1)(t-1)) dt = int dx/x`

Let `2-t/((t+1)(t-1)) = A/(t+1)+ B/(t-1)`

∴  2 - t = A(t -1) + B(t + 1)

Putting t = 1, we get

∴  2 -1 = A(1 -1) + B(1 + 1)

∴  B = `1 /2`

Putting t = -1, we get

2 -(-1) = A(-1 -1) + B(-1 + 1)

∴  A = `(-3)/2`

∴ `int(-3/2)/(t+1)dt +int(1/2)/(t-1) dt = intdx/x`

∴`(-3)/2 int 1/(t+1)dt + 1/2int 1/(t-1) dt = int dx/x`

∴`(-3)/2 log|t+1| + 1/2 log |t-1| = log |x| + log |c_1|`

∴ `-3 log |(y+x)/x| + log|(y-x)/x| = 2log |x| + 2 log |c_1|`

∴ -3 log |y+x| + 3 log |x| + log | y -x| - log |x|

= 2 log |x| + 2 log |c1|

∴ log |y - x| = 3 log |y+x|+ 2 log |c1|

∴  log |y- x |= log |( y+ x )3|+ log | c12|

∴  log | y - x| = log | c12 ( x+y)3|

∴  (y - x) = c(x + y) 3 …  |c12 c|

shaalaa.com

Notes

Answer given in the textbook is `log |(x+y)/(x-y)| - 1/2 log | x^2 - y^2| + 2 log x = log c.`

However, as per our calculation it is ‘(y -x) = c(x+y)3.

  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 8: Differential Equation and Applications - Exercise 8.4 [पृष्ठ १६७]

APPEARS IN

बालभारती Mathematics and Statistics 1 (Commerce) [English] 12 Standard HSC Maharashtra State Board
पाठ 8 Differential Equation and Applications
Exercise 8.4 | Q 1.4 | पृष्ठ १६७

संबंधित प्रश्‍न

\[x + \left( \frac{dy}{dx} \right) = \sqrt{1 + \left( \frac{dy}{dx} \right)^2}\]

\[\frac{dy}{dx} = \log x\]

xy (y + 1) dy = (x2 + 1) dx


\[\sqrt{1 + x^2} dy + \sqrt{1 + y^2} dx = 0\]

y (1 + ex) dy = (y + 1) ex dx


\[\frac{dy}{dx} = e^{x + y} + e^{- x + y}\]

\[\frac{dy}{dx} = 1 + x^2 + y^2 + x^2 y^2 , y\left( 0 \right) = 1\]

\[xy\frac{dy}{dx} = \left( x + 2 \right)\left( y + 2 \right), y\left( 1 \right) = - 1\]

\[\frac{dy}{dx} = \left( x + y \right)^2\]

y ex/y dx = (xex/y + y) dy


Solve the following initial value problem:
\[\frac{dy}{dx} + y \cot x = 4x\text{ cosec }x, y\left( \frac{\pi}{2} \right) = 0\]


Find the equation of the curve such that the portion of the x-axis cut off between the origin and the tangent at a point is twice the abscissa and which passes through the point (1, 2).


Solve the following differential equation.

`dy/dx = x^2 y + y`


`xy dy/dx  = x^2 + 2y^2`


Choose the correct alternative:

Differential equation of the function c + 4yx = 0 is


State whether the following statement is True or False:

The integrating factor of the differential equation `("d"y)/("d"x) - y` = x is e–x 


The function y = cx is the solution of differential equation `("d"y)/("d"x) = y/x`


Solve the following differential equation `("d"y)/("d"x)` = x2y + y


Find the particular solution of the following differential equation

`("d"y)/("d"x)` = e2y cos x, when x = `pi/6`, y = 0.

Solution: The given D.E. is `("d"y)/("d"x)` = e2y cos x

∴ `1/"e"^(2y)  "d"y` = cos x dx

Integrating, we get

`int square  "d"y` = cos x dx

∴ `("e"^(-2y))/(-2)` = sin x + c1

∴ e–2y = – 2sin x – 2c1

∴ `square` = c, where c = – 2c

This is general solution.

When x = `pi/6`, y = 0, we have

`"e"^0 + 2sin  pi/6` = c

∴ c = `square`

∴ particular solution is `square`


Solve `x^2 "dy"/"dx" - xy = 1 + cos(y/x)`, x ≠ 0 and x = 1, y = `pi/2`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×