मराठी

X + ( D Y D X ) = √ 1 + ( D Y D X ) 2 - Mathematics

Advertisements
Advertisements

प्रश्न

\[x + \left( \frac{dy}{dx} \right) = \sqrt{1 + \left( \frac{dy}{dx} \right)^2}\]
बेरीज

उत्तर

\[x + \left( \frac{dy}{dx} \right) = \sqrt{1 + \left( \frac{dy}{dx} \right)^2}\]

\[ \Rightarrow x + \left( \frac{dy}{dx} \right) = \left( 1 + \left( \frac{dy}{dx} \right)^2 \right)^\frac{1}{2} \]

Squaring both sides, we get

\[ \Rightarrow \left( x + \frac{dy}{dx} \right)^2 = 1 + \left( \frac{dy}{dx} \right)^2 \]

\[ \Rightarrow x^2 + 2x\frac{dy}{dx} + \left( \frac{dy}{dx} \right)^2 = 1 + \left( \frac{dy}{dx} \right)^2 \]

\[ \Rightarrow 2x\frac{dy}{dx} + x^2 = 1\]

In this differential equation, the order of the highest order derivative is 1 and the power is 1. So, it is a differential equation of order 1 and degree 1.

Hence, it is a linear differential equation.

shaalaa.com

Notes

The answer given in the book has some error. The solution here is created according to the question given in the book.

  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 22: Differential Equations - Exercise 22.01 [पृष्ठ ५]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 22 Differential Equations
Exercise 22.01 | Q 8 | पृष्ठ ५

व्हिडिओ ट्यूटोरियलVIEW ALL [2]

संबंधित प्रश्‍न

\[\left( \frac{dy}{dx} \right)^2 + \frac{1}{dy/dx} = 2\]

\[y\frac{d^2 x}{d y^2} = y^2 + 1\]

Form the differential equation representing the family of ellipses having centre at the origin and foci on x-axis.


Show that the function y = A cos x + B sin x is a solution of the differential equation \[\frac{d^2 y}{d x^2} + y = 0\]


Show that the function y = A cos 2x − B sin 2x is a solution of the differential equation \[\frac{d^2 y}{d x^2} + 4y = 0\].


Verify that y2 = 4ax is a solution of the differential equation y = x \[\frac{dy}{dx} + a\frac{dx}{dy}\]


Verify that y2 = 4a (x + a) is a solution of the differential equations
\[y\left\{ 1 - \left( \frac{dy}{dx} \right)^2 \right\} = 2x\frac{dy}{dx}\]


For the following differential equation verify that the accompanying function is a solution:

Differential equation Function
\[x\frac{dy}{dx} = y\]
y = ax

\[\frac{dy}{dx} = \frac{e^x \left( \sin^2 x + \sin 2x \right)}{y\left( 2 \log y + 1 \right)}\]

\[\frac{dy}{dx} = \left( \cos^2 x - \sin^2 x \right) \cos^2 y\]

Solve the following differential equation:
\[\left( 1 + y^2 \right) \tan^{- 1} xdx + 2y\left( 1 + x^2 \right)dy = 0\]


In a bank principal increases at the rate of 5% per year. An amount of Rs 1000 is deposited with this bank, how much will it worth after 10 years (e0.5 = 1.648).


\[\frac{dy}{dx} = \left( x + y \right)^2\]

\[\frac{dy}{dx} = \tan\left( x + y \right)\]

(x + y) (dx − dy) = dx + dy


\[\frac{dy}{dx} = \frac{y^2 - x^2}{2xy}\]

Solve the following initial value problem:-
\[x\frac{dy}{dx} - y = \log x, y\left( 1 \right) = 0\]


Solve the following initial value problem:-

\[\frac{dy}{dx} + y \tan x = 2x + x^2 \tan x, y\left( 0 \right) = 1\]


Solve the following initial value problem:-

\[dy = \cos x\left( 2 - y\text{ cosec }x \right)dx\]


Find the equation of the curve which passes through the point (1, 2) and the distance between the foot of the ordinate of the point of contact and the point of intersection of the tangent with x-axis is twice the abscissa of the point of contact.


Find the equation of the curve passing through the point (0, 1) if the slope of the tangent to the curve at each of its point is equal to the sum of the abscissa and the product of the abscissa and the ordinate of the point.


Integrating factor of the differential equation cos \[x\frac{dy}{dx} + y\] sin x = 1, is


What is integrating factor of \[\frac{dy}{dx}\] + y sec x = tan x?


Solve the following differential equation : \[y^2 dx + \left( x^2 - xy + y^2 \right)dy = 0\] .


Form the differential equation of the family of parabolas having vertex at origin and axis along positive y-axis.


Find the equation of the plane passing through the point (1, -2, 1) and perpendicular to the line joining the points A(3, 2, 1) and B(1, 4, 2). 


In each of the following examples, verify that the given function is a solution of the corresponding differential equation.

Solution D.E.
y = ex  `dy/ dx= y`

For each of the following differential equations find the particular solution.

`y (1 + logx)dx/dy - x log x = 0`,

when x=e, y = e2.


Solve the following differential equation.

`dy /dx +(x-2 y)/ (2x- y)= 0`


Solve the following differential equation.

`x^2 dy/dx = x^2 +xy - y^2`


Solve the following differential equation.

`(x + a) dy/dx = – y + a`


Choose the correct alternative.

The solution of `x dy/dx = y` log y is


A solution of a differential equation which can be obtained from the general solution by giving particular values to the arbitrary constants is called ___________ solution.


Solve the differential equation:

dr = a r dθ − θ dr


Solve:

(x + y) dy = a2 dx


Solve the differential equation sec2y tan x dy + sec2x tan y dx = 0


State whether the following statement is True or False:

The integrating factor of the differential equation `("d"y)/("d"x) - y` = x is e–x 


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×