Advertisements
Advertisements
प्रश्न
In a bank principal increases at the rate of 5% per year. An amount of Rs 1000 is deposited with this bank, how much will it worth after 10 years (e0.5 = 1.648).
उत्तर
Let at any instant t, the principal be P .
Here, it is given that the principal increases at the rate of 5 % per year .
\[\frac{dP}{dt} = \frac{5P}{100}\]
\[ \Rightarrow \frac{dP}{P} = \frac{1}{20}dt\]
Integrating both sides, we get
\[\ln P = \frac{t}{20} + \ln C ...........(1) \]
Initially at t = 0, it is given that P = Rs 1000 .
\[\ln 1000 = \ln C\]
Substituting the value of ln C in (1), we get
\[\ln P = \frac{t}{20} + \ln 1000\]
\[\text{ Putting }t = 10, \text{ we get }\]
\[\ln \frac{P}{1000} = 0 . 5\]
\[ \Rightarrow \frac{P}{1000} = e^{0 . 5} \]
\[ \Rightarrow P = 1000 \times 1 . 648\]
\[ = 1648\]
Therefore, Rs 1000 will be worth Rs 1648 after 10 years .
APPEARS IN
संबंधित प्रश्न
Show that the function y = A cos 2x − B sin 2x is a solution of the differential equation \[\frac{d^2 y}{d x^2} + 4y = 0\].
Verify that y = \[\frac{a}{x} + b\] is a solution of the differential equation
\[\frac{d^2 y}{d x^2} + \frac{2}{x}\left( \frac{dy}{dx} \right) = 0\]
Verify that y = − x − 1 is a solution of the differential equation (y − x) dy − (y2 − x2) dx = 0.
Verify that y2 = 4a (x + a) is a solution of the differential equations
\[y\left\{ 1 - \left( \frac{dy}{dx} \right)^2 \right\} = 2x\frac{dy}{dx}\]
Differential equation \[\frac{dy}{dx} + y = 2, y \left( 0 \right) = 3\] Function y = e−x + 2
Differential equation \[\frac{d^2 y}{d x^2} - 3\frac{dy}{dx} + 2y = 0, y \left( 0 \right) = 1, y' \left( 0 \right) = 3\] Function y = ex + e2x
(ey + 1) cos x dx + ey sin x dy = 0
x2 dy + y (x + y) dx = 0
Find the particular solution of the differential equation \[\frac{dy}{dx} = \frac{xy}{x^2 + y^2}\] given that y = 1 when x = 0.
Solve the following initial value problem:-
\[y' + y = e^x , y\left( 0 \right) = \frac{1}{2}\]
In a culture, the bacteria count is 100000. The number is increased by 10% in 2 hours. In how many hours will the count reach 200000, if the rate of growth of bacteria is proportional to the number present?
The normal to a given curve at each point (x, y) on the curve passes through the point (3, 0). If the curve contains the point (3, 4), find its equation.
The rate of increase of bacteria in a culture is proportional to the number of bacteria present and it is found that the number doubles in 6 hours. Prove that the bacteria becomes 8 times at the end of 18 hours.
The integrating factor of the differential equation (x log x)
\[\frac{dy}{dx} + y = 2 \log x\], is given by
The solution of the differential equation \[\frac{dy}{dx} - \frac{y\left( x + 1 \right)}{x} = 0\] is given by
The differential equation satisfied by ax2 + by2 = 1 is
The integrating factor of the differential equation \[\left( 1 - y^2 \right)\frac{dx}{dy} + yx = ay\left( - 1 < y < 1 \right)\] is ______.
y2 dx + (x2 − xy + y2) dy = 0
The price of six different commodities for years 2009 and year 2011 are as follows:
Commodities | A | B | C | D | E | F |
Price in 2009 (₹) |
35 | 80 | 25 | 30 | 80 | x |
Price in 2011 (₹) | 50 | y | 45 | 70 | 120 | 105 |
The Index number for the year 2011 taking 2009 as the base year for the above data was calculated to be 125. Find the values of x andy if the total price in 2009 is ₹ 360.
Solve the following differential equation.
y2 dx + (xy + x2 ) dy = 0
Solve the following differential equation.
`dy /dx +(x-2 y)/ (2x- y)= 0`
Solve the following differential equation.
`(x + y) dy/dx = 1`
The solution of `dy/dx + x^2/y^2 = 0` is ______
y2 dx + (xy + x2)dy = 0
Solve the following differential equation `("d"y)/("d"x)` = x2y + y
Solve the following differential equation y2dx + (xy + x2) dy = 0
Choose the correct alternative:
Differential equation of the function c + 4yx = 0 is
Choose the correct alternative:
General solution of `y - x ("d"y)/("d"x)` = 0 is
The integrating factor of the differential equation `"dy"/"dx" (x log x) + y` = 2logx is ______.
Integrating factor of the differential equation `x "dy"/"dx" - y` = sinx is ______.