मराठी
महाराष्ट्र राज्य शिक्षण मंडळएचएससी वाणिज्य (इंग्रजी माध्यम) इयत्ता १२ वी

Y2 dx + (xy + x2)dy = 0 - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

y2 dx + (xy + x2)dy = 0

बेरीज

उत्तर

y2 dx + (xy + x2)dy = 0

∴ (xy + x2 ) dy = -y2 dx

∴ `dy/dx = -y^2/(xy + x^2)` ...(i)

Put y = tx ...(ii)

Differentiating w.r.t. x, we get

`dy/dx = t + x dt/dx` ...(iii)

Substituting (ii) and (iii) in (i), we get

∴ `t + x dt/dx = (-t^2 x^2)/(x.tx + x^2)`

∴ `t + x dt/dx = (-t^2 x^2)/(x^2(t+1)`

∴ `x dt/dx = (-t^2)/(t+1) -t`

∴  `x dt/dx = (-t^2 - t^2 - t)/(t+1)`

∴  `x dt/dx = (- (2t^2 + t))/(t+1)`

∴ `(t+1)/(2t^2 +t) dt = -1/x dx`

Integrating on both sides, we get

`int (t+1)/(2t^2 + t) dt = - int 1/x dx`

∴ `int (2t +1 - t)/(t(2t+1)) dt = - int 1/x dx`

∴ `int 1/t dt - int 1/(2t + 1) dt = -int 1/x dx`

∴ `log | t | -1/ 2 log |2t + 1| = -log |x| + log |c|`

∴ 2log| t | -log |2t + 1| = -2log |x| + 2 log |c|

∴ `2log |y/x| -log |(2y)/ x +1|=- 2log |x| + 2 log |c|`

∴  2log |y| - 2log |x| - log |2y + x| + log |x| = - 2log |x| + 2log |c|

∴  log |y2| + log |x| = log |c2 |+ log |2y + x|

∴  log |y2x| = log |c2(x + 2y)|

∴  xy2 = c2 (x + 2y)

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 8: Differential Equation and Applications - Miscellaneous Exercise 8 [पृष्ठ १७३]

APPEARS IN

बालभारती Mathematics and Statistics 1 (Commerce) [English] 12 Standard HSC Maharashtra State Board
पाठ 8 Differential Equation and Applications
Miscellaneous Exercise 8 | Q 4.11 | पृष्ठ १७३

संबंधित प्रश्‍न

\[\frac{d^2 y}{d x^2} + 4y = 0\]

\[x + \left( \frac{dy}{dx} \right) = \sqrt{1 + \left( \frac{dy}{dx} \right)^2}\]

Show that Ax2 + By2 = 1 is a solution of the differential equation x \[\left\{ y\frac{d^2 y}{d x^2} + \left( \frac{dy}{dx} \right)^2 \right\} = y\frac{dy}{dx}\]

 


Differential equation \[\frac{d^2 y}{d x^2} + y = 0, y \left( 0 \right) = 0, y' \left( 0 \right) = 1\] Function y = sin x


\[\frac{1}{x}\frac{dy}{dx} = \tan^{- 1} x, x \neq 0\]

\[\frac{dy}{dx} = x e^x - \frac{5}{2} + \cos^2 x\]

\[x\frac{dy}{dx} + y = y^2\]

\[x\frac{dy}{dx} + \cot y = 0\]

\[\left( x - 1 \right)\frac{dy}{dx} = 2 x^3 y\]

\[\left( x + y \right)^2 \frac{dy}{dx} = 1\]

\[\frac{dy}{dx} + 1 = e^{x + y}\]

\[\frac{dy}{dx} = \frac{y^2 - x^2}{2xy}\]

Find the equation of the curve which passes through the point (3, −4) and has the slope \[\frac{2y}{x}\]  at any point (x, y) on it.


Integrating factor of the differential equation cos \[x\frac{dy}{dx} + y \sin x = 1\], is


The integrating factor of the differential equation \[\left( 1 - y^2 \right)\frac{dx}{dy} + yx = ay\left( - 1 < y < 1 \right)\] is ______.


Solve the following differential equation.

`xy  dy/dx = x^2 + 2y^2`


Choose the correct alternative.

The solution of `x dy/dx = y` log y is


Solve the following differential equation `("d"y)/("d"x)` = x2y + y


Solve the following differential equation 

sec2 x tan y dx + sec2 y tan x dy = 0

Solution: sec2 x tan y dx + sec2 y tan x dy = 0

∴ `(sec^2x)/tanx  "d"x + square` = 0

Integrating, we get

`square + int (sec^2y)/tany  "d"y` = log c

Each of these integral is of the type

`int ("f'"(x))/("f"(x))  "d"x` = log |f(x)| + log c

∴ the general solution is

`square + log |tan y|` = log c

∴ log |tan x . tan y| = log c

`square`

This is the general solution.


There are n students in a school. If r % among the students are 12 years or younger, which of the following expressions represents the number of students who are older than 12?


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×