English

Y2 dx + (xy + x2)dy = 0 - Mathematics and Statistics

Advertisements
Advertisements

Question

y2 dx + (xy + x2)dy = 0

Sum

Solution

y2 dx + (xy + x2)dy = 0

∴ (xy + x2 ) dy = -y2 dx

∴ `dy/dx = -y^2/(xy + x^2)` ...(i)

Put y = tx ...(ii)

Differentiating w.r.t. x, we get

`dy/dx = t + x dt/dx` ...(iii)

Substituting (ii) and (iii) in (i), we get

∴ `t + x dt/dx = (-t^2 x^2)/(x.tx + x^2)`

∴ `t + x dt/dx = (-t^2 x^2)/(x^2(t+1)`

∴ `x dt/dx = (-t^2)/(t+1) -t`

∴  `x dt/dx = (-t^2 - t^2 - t)/(t+1)`

∴  `x dt/dx = (- (2t^2 + t))/(t+1)`

∴ `(t+1)/(2t^2 +t) dt = -1/x dx`

Integrating on both sides, we get

`int (t+1)/(2t^2 + t) dt = - int 1/x dx`

∴ `int (2t +1 - t)/(t(2t+1)) dt = - int 1/x dx`

∴ `int 1/t dt - int 1/(2t + 1) dt = -int 1/x dx`

∴ `log | t | -1/ 2 log |2t + 1| = -log |x| + log |c|`

∴ 2log| t | -log |2t + 1| = -2log |x| + 2 log |c|

∴ `2log |y/x| -log |(2y)/ x +1|=- 2log |x| + 2 log |c|`

∴  2log |y| - 2log |x| - log |2y + x| + log |x| = - 2log |x| + 2log |c|

∴  log |y2| + log |x| = log |c2 |+ log |2y + x|

∴  log |y2x| = log |c2(x + 2y)|

∴  xy2 = c2 (x + 2y)

shaalaa.com
  Is there an error in this question or solution?
Chapter 8: Differential Equation and Applications - Miscellaneous Exercise 8 [Page 173]

APPEARS IN

Balbharati Mathematics and Statistics 1 (Commerce) [English] 12 Standard HSC Maharashtra State Board
Chapter 8 Differential Equation and Applications
Miscellaneous Exercise 8 | Q 4.11 | Page 173

RELATED QUESTIONS

If 1, `omega` and `omega^2` are the cube roots of unity, prove `(a + b omega + c omega^2)/(c + s omega +  b omega^2) =  omega^2`


Show that Ax2 + By2 = 1 is a solution of the differential equation x \[\left\{ y\frac{d^2 y}{d x^2} + \left( \frac{dy}{dx} \right)^2 \right\} = y\frac{dy}{dx}\]

 


Differential equation \[x\frac{dy}{dx} = 1, y\left( 1 \right) = 0\]

Function y = log x


Differential equation \[\frac{dy}{dx} = y, y\left( 0 \right) = 1\]
Function y = ex


\[\frac{dy}{dx} = x \log x\]

\[\sqrt{1 + x^2 + y^2 + x^2 y^2} + xy\frac{dy}{dx} = 0\]

\[\cos y\frac{dy}{dx} = e^x , y\left( 0 \right) = \frac{\pi}{2}\]

Solve the differential equation \[\frac{dy}{dx} = \frac{2x\left( \log x + 1 \right)}{\sin y + y \cos y}\], given that y = 0, when x = 1.


\[\cos^2 \left( x - 2y \right) = 1 - 2\frac{dy}{dx}\]

\[x^2 \frac{dy}{dx} = x^2 - 2 y^2 + xy\]

\[x^2 \frac{dy}{dx} = x^2 + xy + y^2 \]


(y2 − 2xy) dx = (x2 − 2xy) dy


2xy dx + (x2 + 2y2) dy = 0


The rate of increase of bacteria in a culture is proportional to the number of bacteria present and it is found that the number doubles in 6 hours. Prove that the bacteria becomes 8 times at the end of 18 hours.


The differential equation satisfied by ax2 + by2 = 1 is


For each of the following differential equations find the particular solution.

`y (1 + logx)dx/dy - x log x = 0`,

when x=e, y = e2.


Select and write the correct alternative from the given option for the question 

Differential equation of the function c + 4yx = 0 is


Verify y = log x + c is the solution of differential equation `x ("d"^2y)/("d"x^2) + ("d"y)/("d"x)` = 0


Given that `"dy"/"dx" = "e"^-2x` and y = 0 when x = 5. Find the value of x when y = 3.


Solution of `x("d"y)/("d"x) = y + x tan  y/x` is `sin(y/x)` = cx


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×