Advertisements
Advertisements
Question
y2 dx + (xy + x2)dy = 0
Solution
y2 dx + (xy + x2)dy = 0
∴ (xy + x2 ) dy = -y2 dx
∴ `dy/dx = -y^2/(xy + x^2)` ...(i)
Put y = tx ...(ii)
Differentiating w.r.t. x, we get
`dy/dx = t + x dt/dx` ...(iii)
Substituting (ii) and (iii) in (i), we get
∴ `t + x dt/dx = (-t^2 x^2)/(x.tx + x^2)`
∴ `t + x dt/dx = (-t^2 x^2)/(x^2(t+1)`
∴ `x dt/dx = (-t^2)/(t+1) -t`
∴ `x dt/dx = (-t^2 - t^2 - t)/(t+1)`
∴ `x dt/dx = (- (2t^2 + t))/(t+1)`
∴ `(t+1)/(2t^2 +t) dt = -1/x dx`
Integrating on both sides, we get
`int (t+1)/(2t^2 + t) dt = - int 1/x dx`
∴ `int (2t +1 - t)/(t(2t+1)) dt = - int 1/x dx`
∴ `int 1/t dt - int 1/(2t + 1) dt = -int 1/x dx`
∴ `log | t | -1/ 2 log |2t + 1| = -log |x| + log |c|`
∴ 2log| t | -log |2t + 1| = -2log |x| + 2 log |c|
∴ `2log |y/x| -log |(2y)/ x +1|=- 2log |x| + 2 log |c|`
∴ 2log |y| - 2log |x| - log |2y + x| + log |x| = - 2log |x| + 2log |c|
∴ log |y2| + log |x| = log |c2 |+ log |2y + x|
∴ log |y2x| = log |c2(x + 2y)|
∴ xy2 = c2 (x + 2y)
APPEARS IN
RELATED QUESTIONS
If 1, `omega` and `omega^2` are the cube roots of unity, prove `(a + b omega + c omega^2)/(c + s omega + b omega^2) = omega^2`
Show that Ax2 + By2 = 1 is a solution of the differential equation x \[\left\{ y\frac{d^2 y}{d x^2} + \left( \frac{dy}{dx} \right)^2 \right\} = y\frac{dy}{dx}\]
Differential equation \[x\frac{dy}{dx} = 1, y\left( 1 \right) = 0\]
Function y = log x
Differential equation \[\frac{dy}{dx} = y, y\left( 0 \right) = 1\]
Function y = ex
Solve the differential equation \[\frac{dy}{dx} = \frac{2x\left( \log x + 1 \right)}{\sin y + y \cos y}\], given that y = 0, when x = 1.
\[x^2 \frac{dy}{dx} = x^2 + xy + y^2 \]
(y2 − 2xy) dx = (x2 − 2xy) dy
2xy dx + (x2 + 2y2) dy = 0
The rate of increase of bacteria in a culture is proportional to the number of bacteria present and it is found that the number doubles in 6 hours. Prove that the bacteria becomes 8 times at the end of 18 hours.
The differential equation satisfied by ax2 + by2 = 1 is
For each of the following differential equations find the particular solution.
`y (1 + logx)dx/dy - x log x = 0`,
when x=e, y = e2.
Select and write the correct alternative from the given option for the question
Differential equation of the function c + 4yx = 0 is
Verify y = log x + c is the solution of differential equation `x ("d"^2y)/("d"x^2) + ("d"y)/("d"x)` = 0
Given that `"dy"/"dx" = "e"^-2x` and y = 0 when x = 5. Find the value of x when y = 3.
Solution of `x("d"y)/("d"x) = y + x tan y/x` is `sin(y/x)` = cx