English

Differential Equation D Y D X = Y , Y ( 0 ) = 1 Function Y = Ex - Mathematics

Advertisements
Advertisements

Question

Differential equation \[\frac{dy}{dx} = y, y\left( 0 \right) = 1\]
Function y = ex

Sum

Solution

We have,

\[y = e^x..........(1)\]

Differentiating both sides of (1) with respect to x, we get

\[\frac{dy}{dx} = e^x\]

⇒ \[\frac{dy}{dx} = y............\left[\text{Using (1)}\right]\]

It is the given differential equation.

Here, \[y = e^x\] satisfies the given differential equation; hence, it is a solution.

Also, when \[x = 0, y = e^0 = 1, i.e.,y(0) = 1 .\]

Hence, \[y = e^x\]  is the solution to the given initial value problem.

shaalaa.com
  Is there an error in this question or solution?
Chapter 22: Differential Equations - Exercise 22.04 [Page 28]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 22 Differential Equations
Exercise 22.04 | Q 2 | Page 28

Video TutorialsVIEW ALL [2]

RELATED QUESTIONS

If 1, `omega` and `omega^2` are the cube roots of unity, prove `(a + b omega + c omega^2)/(c + s omega +  b omega^2) =  omega^2`


\[\frac{d^2 y}{d x^2} + 4y = 0\]

Find the differential equation of all the parabolas with latus rectum '4a' and whose axes are parallel to x-axis.


Verify that y = \[\frac{a}{x} + b\] is a solution of the differential equation
\[\frac{d^2 y}{d x^2} + \frac{2}{x}\left( \frac{dy}{dx} \right) = 0\]


For the following differential equation verify that the accompanying function is a solution:

Differential equation Function
\[x + y\frac{dy}{dx} = 0\]
\[y = \pm \sqrt{a^2 - x^2}\]

Differential equation \[\frac{d^2 y}{d x^2} + y = 0, y \left( 0 \right) = 1, y' \left( 0 \right) = 1\] Function y = sin x + cos x


\[\frac{1}{x}\frac{dy}{dx} = \tan^{- 1} x, x \neq 0\]

\[\frac{dy}{dx} = x e^x - \frac{5}{2} + \cos^2 x\]

C' (x) = 2 + 0.15 x ; C(0) = 100


\[\frac{dy}{dx} + \frac{1 + y^2}{y} = 0\]

x cos y dy = (xex log x + ex) dx


\[x\frac{dy}{dx} + y = y^2\]

\[\frac{dy}{dx} = \frac{x e^x \log x + e^x}{x \cos y}\]

\[x\sqrt{1 - y^2} dx + y\sqrt{1 - x^2} dy = 0\]

\[\frac{dy}{dx} = 2 e^x y^3 , y\left( 0 \right) = \frac{1}{2}\]

\[\frac{dy}{dx} = y \tan x, y\left( 0 \right) = 1\]

In a bank principal increases at the rate of 5% per year. An amount of Rs 1000 is deposited with this bank, how much will it worth after 10 years (e0.5 = 1.648).


\[\frac{dy}{dx} = \sec\left( x + y \right)\]

\[\frac{dy}{dx} = \frac{x + y}{x - y}\]

\[\frac{dy}{dx} = \frac{x}{2y + x}\]

(x + 2y) dx − (2x − y) dy = 0


Find the particular solution of the differential equation \[\frac{dy}{dx} = \frac{xy}{x^2 + y^2}\] given that y = 1 when x = 0.

 


Solve the following initial value problem:-

\[dy = \cos x\left( 2 - y\text{ cosec }x \right)dx\]


In a culture, the bacteria count is 100000. The number is increased by 10% in 2 hours. In how many hours will the count reach 200000, if the rate of growth of bacteria is proportional to the number present?


If the marginal cost of manufacturing a certain item is given by C' (x) = \[\frac{dC}{dx}\] = 2 + 0.15 x. Find the total cost function C (x), given that C (0) = 100.

 

The slope of the tangent at each point of a curve is equal to the sum of the coordinates of the point. Find the curve that passes through the origin.


The solution of the differential equation \[\frac{dy}{dx} - \frac{y\left( x + 1 \right)}{x} = 0\] is given by


The differential equation
\[\frac{dy}{dx} + Py = Q y^n , n > 2\] can be reduced to linear form by substituting


The integrating factor of the differential equation \[x\frac{dy}{dx} - y = 2 x^2\]


Solve the following differential equation.

x2y dx − (x3 + y3 ) dy = 0


Solve the following differential equation.

`(x + y) dy/dx = 1`


Choose the correct alternative.

Bacteria increases at the rate proportional to the number present. If the original number M doubles in 3 hours, then the number of bacteria will be 4M in


State whether the following is True or False:

The degree of a differential equation is the power of the highest ordered derivative when all the derivatives are made free from negative and/or fractional indices if any.


Solve `("d"y)/("d"x) = (x + y + 1)/(x + y - 1)` when x = `2/3`, y = `1/3`


Solve the following differential equation

`x^2  ("d"y)/("d"x)` = x2 + xy − y2 


The function y = cx is the solution of differential equation `("d"y)/("d"x) = y/x`


The integrating factor of the differential equation `"dy"/"dx" (x log x) + y` = 2logx is ______.


Solve the differential equation `"dy"/"dx" + 2xy` = y


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×