English

D Y D X = X E X Log X + E X X Cos Y - Mathematics

Advertisements
Advertisements

Question

\[\frac{dy}{dx} = \frac{x e^x \log x + e^x}{x \cos y}\]

Solution

We have, 
\[\frac{dy}{dx} = \frac{x e^x \log x + e^x}{x \cos y}\]
\[ \Rightarrow x \cos y dy = \left( x e^x \log x + e^x \right) dx\]
\[ \Rightarrow \cos y dy = \left( e^x \log x + \frac{1}{x} e^x \right)dx\]
Integrating both sides, we get
\[\int \cos y dy = \int\left( e^x \log x + \frac{1}{x} e^x \right)dx\]
\[ \Rightarrow \sin y = \log x \int e^x dx - \int\frac{1}{x} e^x dx + \int\frac{1}{x} e^x dx\]
\[ \Rightarrow \sin y = e^x \log x + C\]
\[\text{ Hence, }\sin y = e^x \log x +\text{ C is the required solution .}\]

shaalaa.com
  Is there an error in this question or solution?
Chapter 22: Differential Equations - Exercise 22.07 [Page 55]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 22 Differential Equations
Exercise 22.07 | Q 14 | Page 55

Video TutorialsVIEW ALL [2]

RELATED QUESTIONS

If 1, `omega` and `omega^2` are the cube roots of unity, prove `(a + b omega + c omega^2)/(c + s omega +  b omega^2) =  omega^2`


\[\frac{d^3 x}{d t^3} + \frac{d^2 x}{d t^2} + \left( \frac{dx}{dt} \right)^2 = e^t\]

\[\frac{d^2 y}{d x^2} + \left( \frac{dy}{dx} \right)^2 + xy = 0\]

Verify that y = 4 sin 3x is a solution of the differential equation \[\frac{d^2 y}{d x^2} + 9y = 0\]


Show that the function y = A cos 2x − B sin 2x is a solution of the differential equation \[\frac{d^2 y}{d x^2} + 4y = 0\].


Verify that y2 = 4a (x + a) is a solution of the differential equations
\[y\left\{ 1 - \left( \frac{dy}{dx} \right)^2 \right\} = 2x\frac{dy}{dx}\]


Show that the differential equation of which \[y = 2\left( x^2 - 1 \right) + c e^{- x^2}\]  is a solution is \[\frac{dy}{dx} + 2xy = 4 x^3\]


Differential equation \[\frac{d^2 y}{d x^2} + y = 0, y \left( 0 \right) = 1, y' \left( 0 \right) = 1\] Function y = sin x + cos x


\[\frac{dy}{dx} = \frac{1 - \cos x}{1 + \cos x}\]

(sin x + cos x) dy + (cos x − sin x) dx = 0


\[\sin^4 x\frac{dy}{dx} = \cos x\]

\[\cos x\frac{dy}{dx} - \cos 2x = \cos 3x\]

\[\left( x^3 + x^2 + x + 1 \right)\frac{dy}{dx} = 2 x^2 + x\]

\[\frac{dy}{dx} + \frac{1 + y^2}{y} = 0\]

\[\left( x - 1 \right)\frac{dy}{dx} = 2 x^3 y\]

Solve the following differential equation:
\[xy\frac{dy}{dx} = 1 + x + y + xy\]

 


Solve the following differential equation:
\[y\left( 1 - x^2 \right)\frac{dy}{dx} = x\left( 1 + y^2 \right)\]

 


Solve the following differential equation:
\[y e^\frac{x}{y} dx = \left( x e^\frac{x}{y} + y^2 \right)dy, y \neq 0\]

 


\[\frac{dy}{dx} = y \tan 2x, y\left( 0 \right) = 2\] 

(x + y) (dx − dy) = dx + dy


\[\frac{dy}{dx} + 1 = e^{x + y}\]

\[2xy\frac{dy}{dx} = x^2 + y^2\]

2xy dx + (x2 + 2y2) dy = 0


\[\frac{dy}{dx} = \frac{x}{2y + x}\]

Solve the following initial value problem:-

\[\frac{dy}{dx} - 3y \cot x = \sin 2x; y = 2\text{ when }x = \frac{\pi}{2}\]


The rate of increase in the number of bacteria in a certain bacteria culture is proportional to the number present. Given the number triples in 5 hrs, find how many bacteria will be present after 10 hours. Also find the time necessary for the number of bacteria to be 10 times the number of initial present.


Write the differential equation obtained eliminating the arbitrary constant C in the equation xy = C2.


The integrating factor of the differential equation (x log x)
\[\frac{dy}{dx} + y = 2 \log x\], is given by


The solution of the differential equation \[\frac{dy}{dx} = \frac{ax + g}{by + f}\] represents a circle when


Solve the following differential equation : \[\left( \sqrt{1 + x^2 + y^2 + x^2 y^2} \right) dx + xy \ dy = 0\].


If xmyn = (x + y)m+n, prove that \[\frac{dy}{dx} = \frac{y}{x} .\]


For the following differential equation find the particular solution.

`(x + 1) dy/dx − 1 = 2e^(−y)`,

when y = 0, x = 1


For  the following differential equation find the particular solution.

`dy/ dx = (4x + y + 1),

when  y = 1, x = 0


Solve `("d"y)/("d"x) = (x + y + 1)/(x + y - 1)` when x = `2/3`, y = `1/3`


Solve the following differential equation

`x^2  ("d"y)/("d"x)` = x2 + xy − y2 


Integrating factor of the differential equation `x "dy"/"dx" - y` = sinx is ______.


If `y = log_2 log_2(x)` then `(dy)/(dx)` =


Solve the differential equation

`y (dy)/(dx) + x` = 0


Solve the differential equation

`x + y dy/dx` = x2 + y2


Solve the differential equation `dy/dx + xy = xy^2` and find the particular solution when y = 4, x = 1.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×