Advertisements
Advertisements
Question
If `y = log_2 log_2(x)` then `(dy)/(dx)` =
Options
`(log_2 e)/(log_e x)`
`(log_2 e)/(xlog_x 2)`
`(log_2 x)/(log_e 2)`
`(log_2 e)/(xlog_e x)`
MCQ
Solution
`(log_2 e)/(xlog_e x)`
Explanation:
`y = log_2 log_2 (x)`
`(dx)/(dy) = 1/(log_2(x).log_e 2) xx 1/x log_2 e`
= `(log_2 e. log_2 e)/(x log_2 (x))`
= `(log_2 e)/((x log_2 x)/(log_2 e))`
= `(log_2 e)/(x log_e x)`
shaalaa.com
Is there an error in this question or solution?