English

( X 3 + X 2 + X + 1 ) D Y D X = 2 X 2 + X - Mathematics

Advertisements
Advertisements

Question

\[\left( x^3 + x^2 + x + 1 \right)\frac{dy}{dx} = 2 x^2 + x\]

Solution

We have, 
\[\left( x^3 + x^2 + x + 1 \right)\frac{dy}{dx} = 2 x^2 + x\]
\[ \Rightarrow \frac{dy}{dx} = \frac{2 x^2 + x}{x^3 + x^2 + x + 1}\]
\[ \Rightarrow dy = \frac{2 x^2 + x}{\left( x + 1 \right)\left( x^2 + 1 \right)}dx\]
Integrating both sides, we get
\[\int dy = \int\left\{ \frac{2 x^2 + x}{\left( x + 1 \right)\left( x^2 + 1 \right)} \right\}dx\]
\[ \Rightarrow y = \int\left\{ \frac{2 x^2 + x}{\left( x + 1 \right)\left( x^2 + 1 \right)} \right\}dx\]
\[\text{ Let }\frac{2 x^2 + x}{\left( x + 1 \right)\left( x^2 + 1 \right)} = \frac{A}{x + 1} + \frac{Bx + C}{x^2 + 1}\]
\[ \Rightarrow 2 x^2 + x = A x^2 + A + B x^2 + Bx + Cx + C\]
\[ \Rightarrow 2 x^2 + x = \left( A + B \right) x^2 + \left( B + C \right)x + \left( A + C \right)\]
Comparing the coefficients on both sides, we get
\[A + B = 2 . . . . . \left( 1 \right)\]
\[B + C = 1 . . . . . \left( 2 \right)\]
\[A + C = 0 . . . . . \left( 3 \right)\]
\[\text{ Solving }\left( 1 \right), \left( 2 \right)\text{ and }\left( 3 \right),\text{ we get }\]
\[A = \frac{1}{2}\]
\[B = \frac{3}{2}\]
\[C = - \frac{1}{2}\]
\[ \therefore y = \frac{1}{2}\int\frac{1}{\left( x + 1 \right)}dx + \int\frac{\frac{3}{2}x - \frac{1}{2}}{x^2 + 1} dx\]
\[ = \frac{1}{2}\int\frac{1}{\left( x + 1 \right)}dx + \frac{1}{2}\int\frac{3x}{x^2 + 1}dx - \frac{1}{2}\int\frac{1}{x^2 + 1}dx\]
\[ = \frac{1}{2}\int\frac{1}{\left( x + 1 \right)}dx + \frac{3}{4}\int\frac{2x}{x^2 + 1}dx - \frac{1}{2}\int\frac{1}{x^2 + 1}dx\]
\[ = \frac{1}{2}\log\left| x + 1 \right| + \frac{3}{4}\log\left| x^2 + 1 \right| - \frac{1}{2} \tan^{- 1} x + C\]
\[\text{ Hence, }y = \frac{1}{2}\log\left| x + 1 \right| + \frac{3}{4}\log\left| x^2 + 1 \right| - \frac{1}{2} \tan^{- 1} x +\text{ C is the solution to the given differential equation }.\]

shaalaa.com
  Is there an error in this question or solution?
Chapter 22: Differential Equations - Exercise 22.05 [Page 34]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 22 Differential Equations
Exercise 22.05 | Q 21 | Page 34

Video TutorialsVIEW ALL [2]

RELATED QUESTIONS

Prove that:

`int_0^(2a)f(x)dx = int_0^af(x)dx + int_0^af(2a - x)dx`


Show that y = ex (A cos x + B sin x) is the solution of the differential equation \[\frac{d^2 y}{d x^2} - 2\frac{dy}{dx} + 2y = 0\]


Differential equation \[\frac{d^2 y}{d x^2} - 3\frac{dy}{dx} + 2y = 0, y \left( 0 \right) = 1, y' \left( 0 \right) = 3\] Function y = ex + e2x


\[\frac{dy}{dx} = \cos^3 x \sin^2 x + x\sqrt{2x + 1}\]

\[\frac{dy}{dx} = \frac{x e^x \log x + e^x}{x \cos y}\]

\[\sqrt{1 + x^2} dy + \sqrt{1 + y^2} dx = 0\]

\[\frac{dy}{dx} = \frac{x\left( 2 \log x + 1 \right)}{\sin y + y \cos y}\]

tan y \[\frac{dy}{dx}\] = sin (x + y) + sin (x − y) 

 


y (1 + ex) dy = (y + 1) ex dx


\[\frac{dy}{dx} = \left( \cos^2 x - \sin^2 x \right) \cos^2 y\]

Solve the following differential equation: 
(xy2 + 2x) dx + (x2 y + 2y) dy = 0


\[\frac{dy}{dx} = 2 e^x y^3 , y\left( 0 \right) = \frac{1}{2}\]

In a bank principal increases at the rate of r% per year. Find the value of r if ₹100 double itself in 10 years (loge 2 = 0.6931).


In a bank principal increases at the rate of 5% per year. An amount of Rs 1000 is deposited with this bank, how much will it worth after 10 years (e0.5 = 1.648).


If y(x) is a solution of the different equation \[\left( \frac{2 + \sin x}{1 + y} \right)\frac{dy}{dx} = - \cos x\] and y(0) = 1, then find the value of y(π/2).


\[\frac{dy}{dx}\cos\left( x - y \right) = 1\]

(x + 2y) dx − (2x − y) dy = 0


Find the particular solution of the differential equation \[\frac{dy}{dx} = \frac{xy}{x^2 + y^2}\] given that y = 1 when x = 0.

 


Solve the following initial value problem:-

\[y' + y = e^x , y\left( 0 \right) = \frac{1}{2}\]


Solve the following initial value problem:-

\[x\frac{dy}{dx} - y = \left( x + 1 \right) e^{- x} , y\left( 1 \right) = 0\]


Find the equation of the curve such that the portion of the x-axis cut off between the origin and the tangent at a point is twice the abscissa and which passes through the point (1, 2).


A curve is such that the length of the perpendicular from the origin on the tangent at any point P of the curve is equal to the abscissa of P. Prove that the differential equation of the curve is \[y^2 - 2xy\frac{dy}{dx} - x^2 = 0\], and hence find the curve.


Find the equation of the curve which passes through the point (1, 2) and the distance between the foot of the ordinate of the point of contact and the point of intersection of the tangent with x-axis is twice the abscissa of the point of contact.


Find the equation of the curve that passes through the point (0, a) and is such that at any point (x, y) on it, the product of its slope and the ordinate is equal to the abscissa.


The integrating factor of the differential equation (x log x)
\[\frac{dy}{dx} + y = 2 \log x\], is given by


Integrating factor of the differential equation cos \[x\frac{dy}{dx} + y\] sin x = 1, is


The solution of the differential equation \[\frac{dy}{dx} = \frac{ax + g}{by + f}\] represents a circle when


The differential equation of the ellipse \[\frac{x^2}{a^2} + \frac{y^2}{b^2} = C\] is


Which of the following differential equations has y = C1 ex + C2 ex as the general solution?


The integrating factor of the differential equation \[\left( 1 - y^2 \right)\frac{dx}{dy} + yx = ay\left( - 1 < y < 1 \right)\] is ______.


Find the coordinates of the centre, foci and equation of directrix of the hyperbola x2 – 3y2 – 4x = 8.


Choose the correct option from the given alternatives:

The solution of `1/"x" * "dy"/"dx" = tan^-1 "x"` is


Solve the following differential equation.

`dy /dx +(x-2 y)/ (2x- y)= 0`


Solve the following differential equation.

y dx + (x - y2 ) dy = 0


Solve the differential equation:

dr = a r dθ − θ dr


Select and write the correct alternative from the given option for the question 

Differential equation of the function c + 4yx = 0 is


Solve the differential equation `("d"y)/("d"x) + y` = e−x 


Solve the following differential equation

`yx ("d"y)/("d"x)` = x2 + 2y2 


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×