English

Integrating Factor of the Differential Equation Cos X D Y D X + Y Sin X = 1, is - Mathematics

Advertisements
Advertisements

Question

Integrating factor of the differential equation cos \[x\frac{dy}{dx} + y\] sin x = 1, is

Options

  • sin x

  • sec x

  • tan x

  • cos x

MCQ

Solution

sec x

 

We have,
\[\cos x\frac{dy}{dx} + y \sin x = 1\]
Dividing both sides by cos x, we get
\[\frac{dy}{dx} + \frac{\sin x}{\cos x}y = \frac{1}{\cos x}\]
\[ \Rightarrow \frac{dy}{dx} + \left( \tan x \right)y = \frac{1}{\cos x}\]
\[\text{Comparing with }\frac{dy}{dx} + Py = Q,\text{ we get }\]
\[P = \tan x\]
\[Q = \frac{1}{\cos x}\]
Now,
\[ I . F . = e^{\int\tan xdx} = e^{log\left( \sec x \right)} \]
\[ = \sec x\]

shaalaa.com
  Is there an error in this question or solution?
Chapter 22: Differential Equations - MCQ [Page 139]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 22 Differential Equations
MCQ | Q 3 | Page 139

Video TutorialsVIEW ALL [2]

RELATED QUESTIONS

\[\frac{d^3 x}{d t^3} + \frac{d^2 x}{d t^2} + \left( \frac{dx}{dt} \right)^2 = e^t\]

\[\frac{d^4 y}{d x^4} = \left\{ c + \left( \frac{dy}{dx} \right)^2 \right\}^{3/2}\]

Assume that a rain drop evaporates at a rate proportional to its surface area. Form a differential equation involving the rate of change of the radius of the rain drop.

 

Show that the differential equation of which y = 2(x2 − 1) + \[c e^{- x^2}\] is a solution, is \[\frac{dy}{dx} + 2xy = 4 x^3\]


Show that the function y = A cos x + B sin x is a solution of the differential equation \[\frac{d^2 y}{d x^2} + y = 0\]


Show that y = AeBx is a solution of the differential equation

\[\frac{d^2 y}{d x^2} = \frac{1}{y} \left( \frac{dy}{dx} \right)^2\]

Verify that y = cx + 2c2 is a solution of the differential equation 

\[2 \left( \frac{dy}{dx} \right)^2 + x\frac{dy}{dx} - y = 0\].

For the following differential equation verify that the accompanying function is a solution:

Differential equation Function
\[y = \left( \frac{dy}{dx} \right)^2\]
\[y = \frac{1}{4} \left( x \pm a \right)^2\]

Differential equation \[\frac{d^2 y}{d x^2} + y = 0, y \left( 0 \right) = 0, y' \left( 0 \right) = 1\] Function y = sin x


Differential equation \[\frac{dy}{dx} + y = 2, y \left( 0 \right) = 3\] Function y = e−x + 2


Differential equation \[\frac{d^2 y}{d x^2} - 2\frac{dy}{dx} + y = 0, y \left( 0 \right) = 1, y' \left( 0 \right) = 2\] Function y = xex + ex


\[\frac{dy}{dx} = x^2 + x - \frac{1}{x}, x \neq 0\]

\[\left( x^2 + 1 \right)\frac{dy}{dx} = 1\]

\[\frac{dy}{dx} = x^5 \tan^{- 1} \left( x^3 \right)\]

\[\cos x\frac{dy}{dx} - \cos 2x = \cos 3x\]

(1 + x2) dy = xy dx


x cos y dy = (xex log x + ex) dx


y (1 + ex) dy = (y + 1) ex dx


Solve the following differential equation:
\[y e^\frac{x}{y} dx = \left( x e^\frac{x}{y} + y^2 \right)dy, y \neq 0\]

 


Solve the following differential equation:
\[\left( 1 + y^2 \right) \tan^{- 1} xdx + 2y\left( 1 + x^2 \right)dy = 0\]


\[\frac{dy}{dx} = 2 e^{2x} y^2 , y\left( 0 \right) = - 1\]

The volume of a spherical balloon being inflated changes at a constant rate. If initially its radius is 3 units and after 3 seconds it is 6 units. Find the radius of the balloon after `t` seconds.


If y(x) is a solution of the different equation \[\left( \frac{2 + \sin x}{1 + y} \right)\frac{dy}{dx} = - \cos x\] and y(0) = 1, then find the value of y(π/2).


\[\frac{dy}{dx} = \frac{\left( x - y \right) + 3}{2\left( x - y \right) + 5}\]

\[\left( x + y \right)^2 \frac{dy}{dx} = 1\]

\[\frac{dy}{dx} = \tan\left( x + y \right)\]

(x + 2y) dx − (2x − y) dy = 0


A population grows at the rate of 5% per year. How long does it take for the population to double?


In a culture, the bacteria count is 100000. The number is increased by 10% in 2 hours. In how many hours will the count reach 200000, if the rate of growth of bacteria is proportional to the number present?


Find the curve for which the intercept cut-off by a tangent on x-axis is equal to four times the ordinate of the point of contact.

 

A curve is such that the length of the perpendicular from the origin on the tangent at any point P of the curve is equal to the abscissa of P. Prove that the differential equation of the curve is \[y^2 - 2xy\frac{dy}{dx} - x^2 = 0\], and hence find the curve.


The differential equation of the ellipse \[\frac{x^2}{a^2} + \frac{y^2}{b^2} = C\] is


The differential equation satisfied by ax2 + by2 = 1 is


What is integrating factor of \[\frac{dy}{dx}\] + y sec x = tan x?


Solve the following differential equation.

`xy  dy/dx = x^2 + 2y^2`


Solve the following differential equation.

y dx + (x - y2 ) dy = 0


State whether the following is True or False:

The degree of a differential equation is the power of the highest ordered derivative when all the derivatives are made free from negative and/or fractional indices if any.


`xy dy/dx  = x^2 + 2y^2`


Choose the correct alternative:

Solution of the equation `x("d"y)/("d"x)` = y log y is


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×