English

For the Following Differential Equation Verify that the Accompanying Function is a Solution: Differential Equation Function Y = ( D Y D X ) 2 Y = 1 4 ( X ± a ) 2 - Mathematics

Advertisements
Advertisements

Question

For the following differential equation verify that the accompanying function is a solution:

Differential equation Function
\[y = \left( \frac{dy}{dx} \right)^2\]
\[y = \frac{1}{4} \left( x \pm a \right)^2\]
Sum

Solution

We have,

\[y = \frac{1}{4} \left( x \pm a \right)^2 . . . . . \left( 1 \right)\]

Differentiating both sides of (1) with respect to x, we get

\[\frac{dy}{dx} = \frac{1}{4} \times 2\left( x \pm a \right)\]

\[ \Rightarrow \frac{dy}{dx} = \frac{1}{2}\left( x \pm a \right)\]

Squaring both sides we get

\[ \Rightarrow \left( \frac{dy}{dx} \right)^2 = \left[ \frac{1}{2}\left( x \pm a \right) \right]^2 \]

\[ \Rightarrow \left( \frac{dy}{dx} \right)^2 = \frac{1}{4} \left( x \pm a \right)^2 \]

\[ \Rightarrow \left( \frac{dy}{dx} \right)^2 = y ............\left[\text{Using } \left( 1 \right) \right]\]

\[ \therefore y = \left( \frac{dy}{dx} \right)^2\]

Hence, the given function is the solution to the given differential equation.

shaalaa.com
  Is there an error in this question or solution?
Chapter 22: Differential Equations - Exercise 22.03 [Page 25]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 22 Differential Equations
Exercise 22.03 | Q 21.5 | Page 25

Video TutorialsVIEW ALL [2]

RELATED QUESTIONS

\[\frac{d^2 y}{d x^2} + 4y = 0\]

\[\sqrt{1 + \left( \frac{dy}{dx} \right)^2} = \left( c\frac{d^2 y}{d x^2} \right)^{1/3}\]

\[\sqrt[3]{\frac{d^2 y}{d x^2}} = \sqrt{\frac{dy}{dx}}\]

\[y\frac{d^2 x}{d y^2} = y^2 + 1\]

Show that the function y = A cos x + B sin x is a solution of the differential equation \[\frac{d^2 y}{d x^2} + y = 0\]


Show that y = AeBx is a solution of the differential equation

\[\frac{d^2 y}{d x^2} = \frac{1}{y} \left( \frac{dy}{dx} \right)^2\]

Verify that y2 = 4ax is a solution of the differential equation y = x \[\frac{dy}{dx} + a\frac{dx}{dy}\]


Verify that y = − x − 1 is a solution of the differential equation (y − x) dy − (y2 − x2) dx = 0.


(1 + x2) dy = xy dx


xy (y + 1) dy = (x2 + 1) dx


(1 + x) (1 + y2) dx + (1 + y) (1 + x2) dy = 0


\[x\sqrt{1 - y^2} dx + y\sqrt{1 - x^2} dy = 0\]

\[\frac{dy}{dx} = e^{x + y} + e^{- x + y}\]

Solve the following differential equation:
\[\text{ cosec }x \log y \frac{dy}{dx} + x^2 y^2 = 0\]


Solve the differential equation \[\left( 1 + x^2 \right)\frac{dy}{dx} + \left( 1 + y^2 \right) = 0\], given that y = 1, when x = 0.


(y2 − 2xy) dx = (x2 − 2xy) dy


(x + 2y) dx − (2x − y) dy = 0


\[\frac{dy}{dx} = \frac{y}{x} - \sqrt{\frac{y^2}{x^2} - 1}\]

Solve the following initial value problem:-

\[\frac{dy}{dx} + 2y = e^{- 2x} \sin x, y\left( 0 \right) = 0\]


Solve the following initial value problem:-

\[dy = \cos x\left( 2 - y\text{ cosec }x \right)dx\]


A population grows at the rate of 5% per year. How long does it take for the population to double?


The slope of the tangent at a point P (x, y) on a curve is \[\frac{- x}{y}\]. If the curve passes through the point (3, −4), find the equation of the curve.


The differential equation
\[\frac{dy}{dx} + Py = Q y^n , n > 2\] can be reduced to linear form by substituting


Form the differential equation representing the family of parabolas having vertex at origin and axis along positive direction of x-axis.


Determine the order and degree of the following differential equations.

Solution D.E.
y = 1 − logx `x^2(d^2y)/dx^2 = 1`

Solve the following differential equation.

`(dθ)/dt  = − k (θ − θ_0)`


Solve the following differential equation.

`y^3 - dy/dx = x dy/dx`


For each of the following differential equations find the particular solution.

(x − y2 x) dx − (y + x2 y) dy = 0, when x = 2, y = 0


For the following differential equation find the particular solution.

`(x + 1) dy/dx − 1 = 2e^(−y)`,

when y = 0, x = 1


Solve the following differential equation.

xdx + 2y dx = 0


Solve the following differential equation.

`dy/dx + y = e ^-x`


Choose the correct alternative.

The integrating factor of `dy/dx -  y = e^x `is ex, then its solution is


Solve:

(x + y) dy = a2 dx


The function y = cx is the solution of differential equation `("d"y)/("d"x) = y/x`


Given that `"dy"/"dx"` = yex and x = 0, y = e. Find the value of y when x = 1.


The integrating factor of the differential equation `"dy"/"dx" (x log x) + y` = 2logx is ______.


Given that `"dy"/"dx" = "e"^-2x` and y = 0 when x = 5. Find the value of x when y = 3.


The differential equation of all non horizontal lines in a plane is `("d"^2x)/("d"y^2)` = 0


lf the straight lines `ax + by + p` = 0 and `x cos alpha + y sin alpha = p` are inclined at an angle π/4 and concurrent with the straight line `x sin alpha - y cos alpha` = 0, then the value of `a^2 + b^2` is


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×